Background: Brewer's yeast may have beneficial effects on insulin receptors because of itsglucose tolerance factor in diabetic patients. This study was conducted to investigate the effects of brewer's yeast supplementation on glycemic indices in patients with type 2 diabetes mellitus.

Methods: In a randomized double-blind controlled clinical trial, 84 adults (21 men and 63 women) aged 46.3 ± 6.1 years old with type 2 diabetes mellitus were recruited and divided randomly into two groups: Supplement group receiving brewer's yeast (six 300mg tablets/day, total 1800 mg) and control group receiving placebo (six 300mg tablets/day) for 12 weeks. Body weight, height, body mass index, food consumption (based on 24h food record), fasting blood sugar (FBS), glycosylated hemoglobin, insulin sensitivity, and insulin resistance were measured before and after the intervention. Data analysis was performed using the Statistical Package for Social Sciences (version 18.0).

Results: The changes in FBS, glycosylated hemoglobin, and insulin sensitivity were significantly different between the two groups during the study (respectively P < 0.001, P < 0.001, P = 0.02 independent sample t-test). There was a significant difference in FBS, glycosylated hemoglobin, and insulin sensitivity at the end of the study between the two groups after removing the effects of baseline values (respectively P = 0.002, P < 0.001, P = 0.02, analysis of covariance). Changes in body mass index, 24h food record, insulin resistance were not significant.

Conclusions: Dietary supplementation with brewer›s yeast besides the usual treatment of diabetes can ameliorate blood glucose variables in type 2 diabetes mellitus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3843299PMC

Publication Analysis

Top Keywords

brewer's yeast
16
type diabetes
16
diabetes mellitus
12
fbs glycosylated
12
glycosylated hemoglobin
12
hemoglobin insulin
12
insulin sensitivity
12
glycemic indices
8
group receiving
8
300mg tablets/day
8

Similar Publications

Sterol-Targeted Laboratory Evolution Allows the Isolation of Thermotolerant and Respiratory-Competent Clones of the Industrial Yeast Saccharomyces cerevisiae.

Microb Biotechnol

January 2025

Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain.

Sterol composition plays a crucial role in determining the ability of yeast cells to withstand high temperatures, an essential trait in biotechnology. Using a targeted evolution strategy involving fluconazole (FCNZ), an inhibitor of the sterol biosynthesis pathway, and the immunosuppressant FK506, we aimed to enhance thermotolerance in an industrial baker's yeast population by modifying their sterol composition. This approach yielded six isolates capable of proliferating in liquid YPD with μ values ranging from 0.

View Article and Find Full Text PDF

Chromatin Regulation of Acetic Acid Stress Tolerance by Ino80 in Budding Yeast .

J Agric Food Chem

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Enhanced environmental stress tolerance is important for microbial production of biofuels and biobased chemicals. However, the roles of chromatin regulation in stress tolerance and bioproduction remain unclear. Here, we explore the effects of Ino80, the core subunit of the INO80 chromatin remodeling complex, on yeast stress adaptation.

View Article and Find Full Text PDF

The gastrointestinal (GI) tract is populated by a variety of microbes, which were recently demonstrated to play a major role in both human and animal health [...

View Article and Find Full Text PDF

Recent studies in veterinary science highlight the close relationship between pet health and gastrointestinal health [...

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!