Docking Studies of Methylthiomorpholin Phenols (LQM300 Series) with Angiotensin-Converting Enzyme (ACE).

Open Med Chem J

Laboratorio de Química Medicinal, Departamento de C. Químicas FESC-Universidad Nacional Autónoma de México, Facultad de Química Universidad Autónoma del Estado de México.

Published: December 2013

A main target in the treatment of hypertension is the angiotensin-converting enzyme (ACE). This enzyme is responsible for producing angiotensin II, a potent vasoconstrictor. Therefore, one of the targets in the treatment of hypertension is to inhibit ACE activity. Hence, this study's aim is to use computational studies to demonstrate that the proposed heterocyclic compounds have a molecular affinity for ACE and that, furthermore, these heterocyclic compounds are capable of inhibiting ACE activity, thus avoiding the production of the vasopressor Angiotensin II. All this using computer-aided drug design, and studying the systems, with the proposed compounds, through molecular recognition process and compared with the compounds already on the market for hypertension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849751PMC
http://dx.doi.org/10.2174/1874104501307010030DOI Listing

Publication Analysis

Top Keywords

angiotensin-converting enzyme
8
enzyme ace
8
treatment hypertension
8
ace activity
8
heterocyclic compounds
8
compounds molecular
8
ace
5
docking studies
4
studies methylthiomorpholin
4
methylthiomorpholin phenols
4

Similar Publications

To combat the SARS-CoV-2 pandemic, innovative prevention strategies are needed, including reducing ACE2 expression on respiratory cells. This study screened approved drugs in China for their ability to downregulate ACE2. Daphnetin (DAP) was found to significantly reduce ACE2 mRNA and protein levels in PC9 cells.

View Article and Find Full Text PDF

Unlabelled: This study examined the impact of thiazide and RAAS antihypertensive medications vs DHP-RAAS medications on fracture risk. The close alignment of such settings with clinical use, combined with the potential bone benefits of ACEis and ARBs, provides enhanced accuracy in bone health evidence.

Purpose: To determine whether thiazides, combined with either angiotensin-converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB), offer bone-protective benefits compared with dihydropyridine (DHP) drugs combined with ACEi or ARB.

View Article and Find Full Text PDF

Antihypertensive Effect of Perla and Esmeralda Barley ( L.) Sprouts in an Induction Model with L-NAME In Vivo.

Metabolites

December 2024

Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Eliseo Ramírez Ulloa 400, Doctores Pachuca, Pachuca 42090, Hidalgo, Mexico.

Hypertension is one of the leading causes of premature death worldwide. Despite advances in conventional treatments, there remains a significant need for more effective and natural alternatives to control hypertension. In this context, sprouted barley extracts have emerged as a potential therapeutic option.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) has been a global pandemic affecting millions of people's lives, which has led to 'post-COVID-19 fatigue'. Alarmingly, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) not only infects the lungs but also influences the heart and brain. Endothelial cell dysfunction and hypercoagulation, which we know occur with this infection, lead to thrombo-inflammation that can manifest as many myriad cardio-cerebrovascular disorders, such as brain fog, fatigue, cognitive dysfunction, etc.

View Article and Find Full Text PDF

Impedimetric Sensor for SARS-CoV-2 Spike Protein Detection: Performance Assessment with an ACE2 Peptide-Mimic/Graphite Interface.

Biosensors (Basel)

December 2024

Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.

The COVID-19 pandemic has prompted the need for the development of new biosensors for SARS-CoV-2 detection. Particularly, systems with qualities such as sensitivity, fast detection, appropriate to large-scale analysis, and applicable in situ, avoiding using specific materials or personnel to undergo the test, are highly desirable. In this regard, developing an electrochemical biosensor based on peptides derived from the angiotensin-converting enzyme receptor 2 (ACE2) is a possible answer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!