Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session9k8t8195eal3o440glhs394jvql6le0e): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A new machine learning task is introduced, called latent supervised learning, where the goal is to learn a binary classifier from training labels which serve as surrogates for the unobserved class labels. A specific model is investigated where the surrogate variable arises from a two-component Gaussian mixture with unknown means and variances, and the component membership is determined by a hyperplane in the covariate space. The estimation of the separating hyperplane and the Gaussian mixture parameters forms what shall be referred to as the change-line classification problem. A data-driven sieve maximum likelihood estimator for the hyperplane is proposed, which in turn can be used to estimate the parameters of the Gaussian mixture. The estimator is shown to be consistent. Simulations as well as empirical data show the estimator has high classification accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848255 | PMC |
http://dx.doi.org/10.1080/01621459.2013.789695 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!