Does hematopoietic stem cell transplantation benefit infants with acute leukemia?

Hematology Am Soc Hematol Educ Program

1Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD.

Published: July 2014

A 6-month-old girl was diagnosed with acute lymphoblastic leukemia (ALL). She has completed induction therapy and is currently in first complete remission (CR1). You are asked by your resident if hematopoietic stem cell transplantation (HSCT) would benefit infants with acute leukemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659404PMC
http://dx.doi.org/10.1182/asheducation-2013.1.601DOI Listing

Publication Analysis

Top Keywords

hematopoietic stem
8
stem cell
8
cell transplantation
8
benefit infants
8
infants acute
8
transplantation benefit
4
acute leukemia?
4
leukemia? 6-month-old
4
6-month-old girl
4
girl diagnosed
4

Similar Publications

Exposure to Nanoplastics Cause Caudal Vein Plexus Damage and Hematopoietic Dysfunction by Oxidative Stress Response in Zebrafish .

Int J Nanomedicine

December 2024

Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People's Republic of China.

Introduction: The proliferation of nanoplastics (NPs) has emerged as a significant environmental concern due to their extensive use, raising concerns about potential adverse effects on human health. However, the exact impacts of NPs on the early development of hematopoietic organs remain poorly understood.

Methods: This investigation utilized fluorescence microscopy to observe the effects of various NP concentrations on the caudal vein plexus (CVP) development in zebrafish embryos.

View Article and Find Full Text PDF

We present a series of articles proving the existence of a previously unknown mechanism of interaction between hematopoietic stem cells and extracellular double-stranded DNA (and, in particular, double-stranded DNA of the peripheral bloodstream), which explains the possibility of emergence and fixation of genetic information contained in double-stranded DNA of extracellular origin in hematopoietic stem cells. The concept of the possibility of stochastic or targeted changes in the genome of hematopoietic stem cells is formulated based on the discovery of new, previously unknown biological properties of poorly differentiated hematopoietic precursors. The main provisions of the concept are as follows.

View Article and Find Full Text PDF

Bletilla striata polysaccharide-mediated trained immunity drives the hematopoietic progenitors' expansion and myelopoiesis.

Int Immunopharmacol

December 2024

Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Jiangxi University of Chinese Medicine, Nanchang 330006, China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herb Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China; Department of Cardiovascular Sciences and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA. Electronic address:

Trained immunity represents a functional state of the innate immune response, characterized by enduring epigenetic reprogramming of innate immune cells. This phenomenon facilitates a sustained and advantageous reaction of myeloid cells to subsequent challenges. Bletilla striata polysaccharide (BSP) is the primary active component of Bletilla striata, mainly consisting of mannose and glucose in its chemical structure.

View Article and Find Full Text PDF

Background: Acute graft-versus-host disease (aGVHD) is a complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). The role of macrophages as proficient antigen-presenting cells in aGVHD is a prominent area of investigation in contemporary research. The association between long noncoding RNA nuclear enriched abundant transcript 1 (lncRNA NEAT1) and the macrophage function is of significant interest.

View Article and Find Full Text PDF

c-JUN interacts with HDAC1 as a potential combinatorial therapeutic target in acute myeloid leukemia.

Int Immunopharmacol

December 2024

Department of Scientific Research, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China. Electronic address:

Acute myeloid leukemia (AML) is a biologically heterogeneous disease originating from the clonal expansion of hematopoietic stem cells (HSCs). Clonal expansion of hematopoietic stem cell progenitors (HSC-Prog), along with a block in differentiation, are hallmark features of AML. The disease is characterized by poor clinical outcomes, highlighting the urgent need for effective therapeutic strategies and suitable drug targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!