Oxidative stress plays important roles in a wide range of diseases such as cancer, inflammatory disease, neurodegenerative disorders, etc. Tyrosine nitration in a protein is a chemically stable oxidative modification, and a marker of oxidative injuries. Mass spectrometry (MS) is a key technique to identify nitrotyrosine-containing proteins and nitrotyrosine sites in endogenous and synthetic nitroproteins and nitropeptides. However, in vivo nitrotyrosine-containing proteins occur with extreme low-abundance to severely challenge the use of MS to identify in vivo nitroproteins and nitrotyrosine sites. A preferential enrichment of nitroproteins and/or nitropeptides is necessary before MS analysis. Current enrichment methods include immuno-affinity techniques, chemical derivation of the nitro group plus target isolations, followed with tandem mass spectrometry analysis. This article reviews the MS techniques and pertinent before-MS enrichment techniques for the identification of nitrotyrosine-containing proteins. This article reviews future trends in the field of nitroproteomics, including quantitative nitroproteomics, systems biological networks of nitroproteins, and structural biology study of tyrosine nitration to completely clarify the biological functions of tyrosine nitration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mas.21413 | DOI Listing |
Mol Cell Proteomics
March 2024
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA; Manipal Academy of Higher Education, Manipal, Karnataka, India; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA. Electronic address:
Nitrotyrosine, or 3-nitrotyrosine, is an oxidative post-translational modification induced by reactive nitrogen species. Although nitrotyrosine is considered a marker of oxidative stress and has been associated with inflammation, neurodegeneration, cardiovascular disease, and cancer, identification of nitrotyrosine-modified proteins remains challenging owing to its low stoichiometric levels in biological samples. To facilitate a comprehensive analysis of proteins and peptides containing nitrotyrosine, we optimized an immunoprecipitation-based enrichment workflow using a cell line model.
View Article and Find Full Text PDFFront Chem
February 2022
Oregon State University, Department of Biochemistry and Biophysics, Agricultural and Life Sciences, Corvallis, OR, United States.
A critical step in developing therapeutics for oxidative stress-related pathologies is the ability to determine which specific modified protein species are innocuous by-products of pathology and which are causative agents. To achieve this goal, technologies are needed that can identify, characterize and quantify oxidative post translational modifications (oxPTMs). Nanobodies (Nbs) represent exquisite tools for intracellular tracking of molecules due to their small size, stability and engineerability.
View Article and Find Full Text PDFMethods Mol Biol
July 2021
Department of Translational metabolism, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
Nitrotyrosine formation is caused by presence of reactive oxygen and nitrogen species. Nitration is a very selective process leading to specific modification of only a few tyrosines in protein molecule. 2D electrophoresis and western blotting techniques coupled with mass spectrometry are common methods used in analysis of proteome.
View Article and Find Full Text PDFChemistry
August 2019
State Key Laboratory of Applied Organic Chemistry &, College of Chemistry and Chemical Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, China.
Herein, a strategy for the selective derivatization of 3-nitrotyrosine-containing proteins using the classic azo coupling reaction as the key step is described. This novel approach featured multiple advantages and was successfully applied to detect picomole levels of protein tyrosine nitration in biological samples.
View Article and Find Full Text PDFJ Proteome Res
August 2017
Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States.
Protein tyrosine nitration by oxidative and nitrate stress is important in the pathogenesis of many inflammatory or aging-related diseases. Mass spectrometry analysis of protein nitrotyrosine is very challenging because the non-nitrated peptides suppress the signals of the low-abundance nitrotyrosine (NT) peptides. No validated methods for enrichment of NT-peptides are currently available.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!