GA17, GA19, GA20, GA29, GA44 and 13-hydroxy-GA12, now named GA53, were identified by GC-MS in immature seeds of Vicia faba (broad bean). Also identified were a GA catabolite, two polyhydroxykauranoic acids, and abscisic, phaseic and dihydrophaseic acids. The GAs of Vicia are hydroxylated at C-13, in common with those of other legumes. However the GAs of Vicia are not hydroxylated at C-3, nor do they appear to be readily conjugated. In these respects Vicia resembles Pisum, another member of the tribe Viciae. Vicia differs from Phaseolus and Vigna, of the tribe Phaseoleae, in both these respects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00381261DOI Listing

Publication Analysis

Top Keywords

immature seeds
8
seeds vicia
8
vicia faba
8
gas vicia
8
vicia hydroxylated
8
vicia
6
identification gibberellins
4
gibberellins immature
4
faba chemotaxonomic
4
chemotaxonomic considerations
4

Similar Publications

Qualitative and Quantitative Analyses of 1-Aminocyclopropane-1-carboxylic Acid Concentrations in Plants Organs Using Phenyl Isothiocyanate Derivatization.

J Agric Food Chem

January 2025

Engineering Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China.

1-Aminocyclopropane-1-carboxylic acid (ACC) is a direct precursor of phytohormone ethylene. We used a phenyl isothiocyanate (PITC) derivatization modification method combined with spectrographic analysis to isolate and identify three products of the derivatization reactions of ACC and PITC. The MRM mode of UPLC-MS/MS was used to establish the analysis of 6-phenyl-5-thioxo-4,6-diazaspiro[2.

View Article and Find Full Text PDF

Speed breeding advancements in safflower ( L.): a simplified and efficient approach for accelerating breeding programs.

Mol Breed

January 2025

Department of Agricultural Biotechnology, Genome and Stem Cell Center, Erciyes University, Kayseri, 38280 Türkiye.

This study investigated the potential of extended irradiation combined with immature embryo culture techniques to accelerate generation advancements in safflower ( L.) breeding programs. We developed an efficient speed breeding method by applying light-emitting diodes (LEDs) that emit specific wavelengths, alongside the in vitro germination of immature embryos under controlled environmental conditions.

View Article and Find Full Text PDF

Background: The slow breeding cycle presents a significant challenge in legume research and breeding. While current speed breeding (SB) methods promise faster plant turnover, they encounter space limitations and high costs. Enclosed environments risk pest and disease outbreaks, and supplying water and electricity remains challenging in many developing nations.

View Article and Find Full Text PDF
Article Synopsis
  • Two novel loci, qKRN2-1 and qKRN2-2, linked to kernel row number (KRN) in maize were mapped on chromosome 2, identifying a key candidate gene (Zm00001d002989) related to KRN variation.
  • The study utilized teosinte as a donor parent and an inbred maize line (Mo17) as the recurrent parent, explaining around 68.79% of the phenotypic variance with these QTLs.
  • Findings highlight the genetic basis of KRN, offering valuable insights for maize breeding to enhance grain yields.
View Article and Find Full Text PDF

Plants can transmit information to the next generation and modulate the phenotype of their offspring through epigenetic mechanisms. In this study, we demonstrate the activation of "intergenerational acquired resistance" (IAR) in the progeny of rice (Oryza sativa) plants exogenously treated with dehydroascorbate (DHA). The offspring of lifelong DHA-treated plants (DHA-IAR) were significantly less susceptible to the root-knot nematode Meloidogyne graminicola and partially inherited the DHA-induced transcriptional response found in the parental plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!