The DevR/DosR regulator is believed to play a key role in dormancy adaptation mechanisms of Mycobacterium tuberculosis in response to a multitude of gaseous stresses, including hypoxia, which prevails within granulomas. DevR activates transcription by binding to target promoters containing a minimum of two binding sites. The proximal site overlaps with the SigA -35 element, suggesting that DevR-SigA interaction is required for activating transcription. We evaluated the roles of 14 charged residues of DevR in transcriptional activation under hypoxic stress. Seven of the 14 alanine substitution mutants were defective in regulon activation, of which K191A, R197A, and K179A+K168A (designated K179A*) mutants were significantly or completely compromised in DNA binding. Four mutants, namely, E154A, R155A, E178A, and K208A, were activation defective in spite of binding to DNA and were classified as positive-control (pc) mutants. The SigA interaction defect of the E154A and E178A proteins was established by in vitro and in vivo assays and implies that these substitutions lead to an activation defect because they disrupt an interaction(s) with SigA. The relevance of DevR interaction to the transcriptional machinery was further established by the hypoxia survival phenotype displayed by SigA interaction-defective mutants. Our findings demonstrate the role of DevR-SigA interaction in the activation mechanism and in bacterial survival under hypoxia and establish the housekeeping sigma factor SigA as a molecular target of DevR. The interaction of DevR and RNA polymerase suggests a new and novel interceptable molecular interface for future antidormancy strategies for Mycobacterium tuberculosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911168PMC
http://dx.doi.org/10.1128/JB.01270-13DOI Listing

Publication Analysis

Top Keywords

mycobacterium tuberculosis
12
devr-siga interaction
8
devr interaction
8
interaction
6
siga
6
devr
5
activation
5
mutants
5
essentiality devr/dosr
4
devr/dosr interaction
4

Similar Publications

Screening of the ChemDiv molecular library in cholesterol media against Mycobacterium tuberculosis (Mtb) H37Rv strain identified a novel isoxazole thiophene hit as a putative Rv1625c/Cya activator with a promising in vitro activity and good pharmacokinetic properties. Twenty-nine analogs were synthesized to assess the structure-activity relationships (SAR) to further improve potency. The most notable analog was P15, which showed an intramacrophage EC = 1.

View Article and Find Full Text PDF

Tuberculosis and people who use drugs: why focus on this overlooked population is important and why adapted interventions are necessary.

Lancet Glob Health

January 2025

Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France. Electronic address:

People who use drugs show a higher incidence and prevalence of tuberculosis than people who do not use drugs in areas where Mycobacterium tuberculosis is endemic. However, this population is largely neglected in national tuberculosis programmes. Strategies for active case finding, screening, and linkage to care designed for the general population are not adapted to the needs of people who use drugs, who are stigmatised and difficult to reach.

View Article and Find Full Text PDF

Bovine tuberculosis is mainly caused by Mycobacterium bovis. Bacillus Calmette-Guérin (BCG) is an attenuated strain of M. bovis which provides variable disease protection.

View Article and Find Full Text PDF

Disruption of the mycobacterial redox homeostasis leads to irreversible stress induction and cell death. Hydroquinone scaffolds, as a new type of redox cycling anti-tuberculosis chemotypes, exhibit potent bactericidal activity against non-replicating, nutrient-deprived phenotypically drug-resistant bacteria. Evidences from microbiological, biochemical, and genetic studies indicate that the redox-driven mode of action relies on the reduction of quinones by type II NADH dehydrogenase (NDH2), generating reactive oxygen species (ROS) of bactericidal level.

View Article and Find Full Text PDF

Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!