Quantifying cell-generated mechanical forces within living embryonic tissues.

Nat Methods

1] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. [2] Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA. [3] Vascular Biology Program, Children's Hospital, Boston, Massachusetts, USA. [4] Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.

Published: February 2014

Cell-generated mechanical forces play a critical role during tissue morphogenesis and organ formation in the embryo. Little is known about how these forces shape embryonic organs, mainly because it has not been possible to measure cellular forces within developing three-dimensional (3D) tissues in vivo. We present a method to quantify cell-generated mechanical stresses exerted locally within living embryonic tissues, using fluorescent, cell-sized oil microdroplets with defined mechanical properties and coated with adhesion receptor ligands. After a droplet is introduced between cells in a tissue, local stresses are determined from droplet shape deformations, measured using fluorescence microscopy and computerized image analysis. Using this method, we quantified the anisotropic stresses generated by mammary epithelial cells cultured within 3D aggregates, and we confirmed that these stresses (3.4 nN μm(-2)) are dependent on myosin II activity and are more than twofold larger than stresses generated by cells of embryonic tooth mesenchyme, either within cultured aggregates or in developing whole mouse mandibles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939080PMC
http://dx.doi.org/10.1038/nmeth.2761DOI Listing

Publication Analysis

Top Keywords

cell-generated mechanical
12
mechanical forces
8
living embryonic
8
embryonic tissues
8
stresses generated
8
cultured aggregates
8
stresses
5
quantifying cell-generated
4
mechanical
4
forces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!