Uranium (U) mining remains controversial in many parts of the world, especially in a post-Fukushima context, and often in areas with significant U resources. Although nuclear proponents point to the relatively low carbon intensity of nuclear power compared to fossil fuels, opponents argue that this will be eroded in the future as ore grades decline and energy and greenhouse gas emissions (GGEs) intensity increases as a result. Invariably both sides fail to make use of the increasingly available data reported by some U mines through sustainability reporting - allowing a comprehensive assessment of recent trends in the energy and GGE intensity of U production, as well as combining this with reported mineral resources to allow more comprehensive modelling of future energy and GGEs intensity. In this study, detailed data sets are compiled on reported U resources by deposit type, as well as mine production, energy and GGE intensity. Some important aspects included are the relationship between ore grade, deposit type and recovery, which are crucial in future projections of U mining. Overall, the paper demonstrates that there are extensive U resources known to meet potential short to medium term demand, although the future of U mining remains uncertain due to the doubt about the future of nuclear power as well as a range of complex social, environmental, economic and some site-specific technical issues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2013.11.070 | DOI Listing |
Front Microbiol
December 2024
West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
Background: Numerous studies have demonstrated that is closely associated with human health. These bacteria colonize the mucus layer of the gastrointestinal tract and utilize mucin as their sole source of carbon and nitrogen. spp.
View Article and Find Full Text PDFBMC Genomics
December 2024
Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung, West Java, Indonesia.
Background: The marine environment boasts distinctive physical, chemical, and biological characteristics. While numerous studies have delved into the microbial ecology and biological potential of the marine environment, exploration of genetically encoded, deep-sea sourced secondary metabolites remains scarce. This study endeavors to investigate marine bioproducts derived from deep-sea water samples at a depth of 1,000 m in the Java Trench, Indonesia, utilizing both culture-dependent and whole-genome sequencing methods.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, PR China; The Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, 730030, PR China. Electronic address:
Polyethylene terephthalate microplastics (PET-MPs) have emerged as a significant environmental concern due to their persistence and potential health hazards. Their role in degenerative diseases, particularly intervertebral disc degeneration (IVDD), remains poorly understood, highlighting the need for systematic evaluation of their molecular toxicity. In this study, network toxicology and molecular docking approaches were applied to investigate the toxicological mechanisms of PET-MPs-induced IVDD.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Department of Neurology, Yancheng Third People's Hospital, Yancheng, People's Republic of China.
Objective: The aims of this study were to investigate clinical factors associated with encephalitis relapse and chronic epilepsy development, and to evaluate the effectiveness of immunotherapy on encephalitis relapse.
Methods: Patients with autoimmune encephalitis diagnosed as positive for neuronal surface antibodies in five general hospitals were included. A minimum 12-month follow-up period was conducted, and binary logistic regression analysis was used to identify predictors of encephalitis relapse and chronic epilepsy development.
Fundam Res
November 2024
Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA.
Mitigating methane (CH) emissions from China's coal mines as the largest contributor to anthropogenic CH emissions is vital for limiting global warming. However, the knowledge about CH mitigation potentials and economic costs of Chinese coal mines remain poorly understood, which hinders the formulation of tailored CH mitigation strategies. Here, we estimate and project China's provincial coal mine methane (CMM) emissions, mitigation potentials and costs under various coal production scenarios, by integrating the dynamic emission factors of CMM and key abatement technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!