Revealing the structural and mechanical characteristics of ovine teeth.

J Mech Behav Biomed Mater

School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia. Electronic address:

Published: February 2014

The survival and function of dentition over the lifetime of an animal depends upon the ability of the teeth to resist wear and chemical erosion, and to withstand occlusal loading conditions without suffering debilitating fracture. Understanding how geometrical factors (radius, height, enamel thickness) and mechanical properties of the dental tissues (Young's modulus E, hardness H and toughness KIC of enamel and dentin) combine to ensure the survival of an animal's teeth can provide great insight into the evolutionary history of the animal and its dietary adaptation. While the geometrical factors are beginning to be understood, the range of animals for which measurements of dental tissue properties are available is very narrow, being restricted almost entirely to humans and other primates. The absence of comparative data across a broader range of species makes it impossible to draw conclusions with any certainty. The present study expands knowledge of mammalian dental tissue properties by reporting the Young's modulus and hardness of ovine (sheep) enamel and dentin measured using nano-indentation. We found that sheep molar enamel Young's modulus and hardness are both lower than those of human enamel, by approximately 30%, and 9% respectively, while the properties of dentin are similar. The combination of E and H makes the ovine enamel approximately 30% more resistant to wear than human enamel, which is an imperative in ruminant dentition. The results of this study are interpreted in terms of the ovine feeding ecology, and the structure of the ovine molar and its occlusal surface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2013.11.006DOI Listing

Publication Analysis

Top Keywords

young's modulus
12
modulus hardness
12
geometrical factors
8
enamel dentin
8
dental tissue
8
tissue properties
8
human enamel
8
enamel 30%
8
enamel
7
ovine
5

Similar Publications

Advanced in vitro models are crucial for studying human airway biology. Our objective was the development and optimization of 3D in vitro models representing diverse airway regions, including deep lung alveolar region. This initiative was aimed at assessing the influence of selective scaffold materials on distinct airway co-culture models.

View Article and Find Full Text PDF

Transrectal shear wave elastography (T-SWE) can be used non-invasively to diagnose prostate cancer (PCa) and benign prostatic hyperplasia (BPH). The prostate tissue can be viewed as an ellipsoidal sphere with viscoelastic characterization. Linear elastic model has been used to characterize soft tissues, and the simplification of partial characterization provides incomplete information.

View Article and Find Full Text PDF

Lung progenitor (LP) cells identified by the expression of transcription factor NK2 homeobox 1 (NKX2.1) are essential for development of all lung epithelial cell types and hold tremendous potential for pulmonary research and translational regenerative medicine applications. Here we present engineered hydrogels as a promising alternative to the naturally derived materials that are often used to differentiate human induced pluripotent stem cells (iPSCs) into LP cells.

View Article and Find Full Text PDF

Context: To address the severe fuel crisis and environmental pollution, the use of lightweight metal materials, such as AZ alloy, represents an optimal solution. This study investigates the mechanical behavior and deformation mechanism of AZ alloys under uniaxial compressive using molecular dynamics (MD) simulations. The influence of various compositions, grain sizes (GSs), and temperatures on the compressive stress, the ultimate compressive strength (UCS), compressive yield stress (CYS), Young's modulus (E), shear strain, phase transformation, dislocation distribution, and total deformation length is thoroughly examined.

View Article and Find Full Text PDF

Owing to the differences in sedimentary environments in the mining areas of western China, the mechanical properties of rocks in this region are significantly different from those in the central and eastern regions. Therefore, uniaxial cyclic loading-unloading tests were conducted on fine sandstone found in many roof rocks to study the evolution laws of mechanical properties, deformation characteristics, acoustic emission (AE) parameters, and energy under cyclic loading and unloading conditions. The accumulated residual strain, dissipative energy, acoustic emission cumulative ringing counts, and cumulative energy were introduced to characterize the degree of rock damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!