Efficient and pathogen-specific antifungal agents are required to mitigate drug resistance problems. Here we present cationic small molecules that exhibit excellent microbial selectivity with minimal host toxicity. Unlike typical cationic polymers possessing molecular weight distributions, these compounds have an absolute molecular weight aiding in isolation and characterization. However, their specific molecular recognition motif (terephthalamide-bisurea) facilitates spontaneous supramolecular self-assembly manifesting in several polymer-like properties. Computational modelling of the terephthalamide-bisurea structures predicts zig-zag or bent arrangements where distal benzyl urea groups stabilize the high-aspect ratio aqueous supramolecular assemblies. These nanostructures are confirmed by transmission electron microscopy and atomic force microscopy. Antifungal activity against drug-sensitive and drug-resistant strains with in vitro and in vivo biocompatibility is observed. Additionally, despite repeated sub-lethal exposures, drug resistance is not induced. Comparison with clinically used amphotericin B shows similar antifungal behaviour without any significant toxicity in a C. albicans biofilm-induced mouse keratitis model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncomms3861 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
Achieving high shielding effectiveness in electromagnetic shielding materials relies heavily on high conductivity, yet simultaneously enhancing the absorption loss remains a persistent challenge. Consequently, the study successfully creates efficient electromagnetic shielding composite films with a unique grape-like bunch structure of hollow nanosilver (HCAF) through layer-by-layer assembly. The utilization of poly(dopamine) (PDA) to anchor nanosilver granules (AgNPs) onto cellulose nanofibers (CNF) results in the formation of CNF@PDA@AgNPs.
View Article and Find Full Text PDFNanotechnol Sci Appl
December 2024
Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland.
Introduction: The rapid growth of flexible and wearable electronics has created a need for materials that offer both mechanical durability and high conductivity. Textile electronics, which integrate electronic pathways into fabrics, are pivotal in this field but face challenges in maintaining stable electrical performance under mechanical strain. This study develops highly stretchable silver multi-walled carbon nanotube (Ag-MWCNT) composites, tailored for screen printing and heat-transfer methods, to address these challenges.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Industrial and Materials Science, Division of Engineering Materials, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
Simultaneous rheological, polarized light imaging, and small-angle X-ray scattering experiments (Rheo-PLI-SAXS) are developed, thereby providing unprecedented level of insight into the multiscale orientation of hierarchical systems in simple shear. Notably, it is observed that mesoscale alignment in the flow direction does not develop simultaneously across nano-micro lengthscales in sheared suspensions of rod-like chiral-nematic (meso) phase forming cellulose nanocrystals. Rather, with increasing shear rate, orientation is observed first at mesoscale and then extends to the nanoscale, with influencing factors being the aggregation state of the hierarchy and concentration.
View Article and Find Full Text PDFNanoImpact
December 2024
In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK. Electronic address:
Multi-walled carbon nanotubes (MWCNTs) are a desirable class of high aspect ratio nanomaterials (HARNs) owing to their extensive applications. Given their demand, the growing occupational and consumer exposure to these materials has warranted an extensive investigation into potential hazards they may pose towards human health. This study utilised both the in vitro mammalian cell gene mutation and the cytokinesis-blocked micronucleus (CBMN) assays to investigate genotoxicity in human lymphoblastoid (TK6) and 16HBE14o human lung epithelial cells, following exposure to NM-400 and NM-401 MWCNTs for 24 h.
View Article and Find Full Text PDFAdv Mater
December 2024
Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
Liquid exfoliation is a scalable and effective method for synthesizing 2D nanosheets (NSs) but often induces contamination and defects. Here, liquid metal gallium (Ga) is used to exfoliate bulk layered materials into 2D NSs at near room temperature, utilizing the liquid surface tension and Ga intercalation to disrupt Van der Waals (vdW) forces. In addition, the process can transform the 2H-phase of transition metal dichalcogenides into the 1T'-phase under ambient conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!