A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assimilative branches and leaves of the desert plant Alhagi sparsifolia Shap. possesses a different adaptation mechanism to shade. | LitMetric

Assimilative branches and leaves of the desert plant Alhagi sparsifolia Shap. possesses a different adaptation mechanism to shade.

Plant Physiol Biochem

State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Published: January 2014

Leaves and assimilative branches are crucial to the life cycle of Alhagi sparsifolia Shap. (Fabaceae), which grows in high-irradiance environments and is the main vegetation in the forelands of the Taklamakan Desert. This plant has an important role in wind protection and sand fixation at the oasis-desert transition zone. The morphology, physiology, and photosynthesis of A. sparsifolia leaves growing under low-light conditions have been extensively investigated. However, whether the plant's assimilative branches adapt similarly to low light levels is unclear, as are its specific light adaptation mechanisms. In this report, we characterized the biomass allocation, morphology, and chlorophyll a fluorescence of leaves and assimilative branches of A. sparsifolia. The results indicated that low-light conditions limited the normal growth of A. sparsifolia. The fraction of biomass allocated to leaves increased, whereas that to assimilative branches decreased. In addition, leaf thickness and assimilative branch diameter decreased, resulting in higher specific leaf area, specific assimilative branch length, and area for higher light absorbing and higher efficiency of light-usage. The assimilative branches and leaves were responded oppositely under low-light conditions in that leaves had lower photosystem II activity and assimilative branches had higher light-use efficiency to maximize light energy absorption for growth of A. sparsifolia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2013.11.009DOI Listing

Publication Analysis

Top Keywords

assimilative branches
28
low-light conditions
12
assimilative
9
branches leaves
8
desert plant
8
alhagi sparsifolia
8
sparsifolia shap
8
leaves assimilative
8
growth a sparsifolia
8
assimilative branch
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!