Expression profiles of genes involved in apoptosis and selenium metabolism in articular cartilage of patients with Kashin-Beck osteoarthritis.

Gene

Faculty of Public Health, College of Medicine of Xi'an Jiaotong University, Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an 710061, China. Electronic address:

Published: February 2014

Kashin-Beck disease (KBD) is a special type of endemic osteoarthritis. It has been suggested that alterations in selenium metabolism and apoptosis play a role in KBD. However, the underlying molecular mechanism remains largely unclear. We performed a microarray analysis using RNA isolated from cartilages of KBD patients and healthy controls, through Significance Analysis of Microarray (SAM) software. Functional gene networks and crucial molecules associated with differentially expressed genes were investigated via Ingenuity Pathway Analysis (IPA) and hub gene analysis. Quantitative real-time PCR was used to check the validation of chip test. We identified 52 up-regulated apoptosis-related genes and 26 down-regulated selenium-related genes between KBD and controls, and these genes associated with the "MYC-mediated apoptosis signaling pathway". We confirmed the results from array studies with quantitative real-time PCR analysis. Our results suggest that abnormal regulation of selenium metabolism and apoptosis through the MYC mediated signaling pathway contributes to the pathogenesis of KBD, but the relationship between apoptosis gene and selenium gene was not found.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2013.11.050DOI Listing

Publication Analysis

Top Keywords

selenium metabolism
12
metabolism apoptosis
8
quantitative real-time
8
real-time pcr
8
genes
5
apoptosis
5
kbd
5
analysis
5
expression profiles
4
profiles genes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!