Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The thermophilic bacterium Caldicellulosiruptor bescii grows at 78 °C on high concentrations (200 g L(-1)) of both crystalline cellulose and unpretreated switchgrass, while low concentrations (<20 g L(-1)) of acid-pretreated switchgrass inhibit growth. Degradation of crystalline cellulose, but not that of unpretreated switchgrass, was limited by nitrogen and vitamin (folate) availability. Under optimal conditions, C. bescii solubilized approximately 60% of the crystalline cellulose and 30% of the unpretreated switchgrass using initial substrate concentrations of 50 g L(-1). Further fermentation of crystalline cellulose and of switchgrass was inhibited by organic acid end-products and by a specific inhibitor of C. bescii growth that did not affect other thermophilic bacteria, respectively. Soluble mono- and oligosaccharides, organic acids, carbon dioxide, and microbial biomass, quantitatively accounted for the crystalline cellulose and plant biomass carbon utilized. C. bescii therefore degrades industrially-relevant concentrations of lignocellulosic biomass that have not undergone pretreatment thereby demonstrating its potential utility in biomass conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2013.11.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!