In vitro and in vivo characterization of the agonist-dependent D3 dopamine receptor tolerance property.

Neuropharmacology

Department of Pharmacology and Physiology, Rutgers-New Jersey Medical School, Newark, NJ, USA. Electronic address:

Published: April 2014

The D3 dopamine receptor has the highest affinity for dopamine, many antipsychotics as well as agonists used to treat Parkinson's disease and related disorders. We and others have reported that the D3 receptor exhibits a tolerance property wherein repeated agonist stimulation of the receptor results in a progressive loss of agonist-induced signaling response. Recently we reported that the D3 receptor tolerance property is agonist dependent and identified a novel agonist, ES609, which does not elicit D3 receptor tolerance. Here, we used the classical tolerance-inducing D3 receptor agonist, PD128907, and the novel agonist, ES609, to demonstrate that the D3 receptor tolerance property is exhibited not only in cellular signaling in vitro and in vivo, but also manifests at the behavior level. Using AtT-20 cells stably expressing D3 receptors we show that PD128907, but not ES609, induces tolerance in the D3 receptor-mitogen activated protein kinase (MAPK) pathway. Using the novel drd3-EGFP reporter mice, we demonstrate that 0.05 mg/kg PD128907 and 10 mg/kg ES609 selectively activate the D3 receptor-MAPK signaling pathway in vivo; however, only PD128907 induces tolerance. Locomotor behavior assessment showed that both PD128907 and ES609 decreased locomotor activity of the drd3-EGFP mice. While the agonist-induced decrease in locomotor activity was attenuated in drd3-EGFP mice administered two sequential doses of tolerance-inducing agonist PD128907, this attenuation was not seen in mice repeatedly administered the novel agonist, ES609. Together the results suggest that the D3 receptor tolerance property is exhibited in MAPK signaling in vitro and in vivo and also affects agonist-induced locomotor behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2013.11.023DOI Listing

Publication Analysis

Top Keywords

receptor tolerance
20
tolerance property
20
in vitro in vivo
12
novel agonist
12
agonist es609
12
receptor
9
dopamine receptor
8
tolerance
8
reported receptor
8
agonist pd128907
8

Similar Publications

Obesity and its associated metabolic disorders are significant global health challenges, necessitating novel therapeutic approaches. This study explores the anti-adipogenic and anti-dyslipidemic properties of 4655-EF, a novel phytopharmaceutical derived from Polyalthia longifolia, and explores the molecular pathways involved in its pharmacological activity. This phytopharmaceutical was prepared using a bioactivity-guided supercritical fluid extraction method suitable for large-scale production.

View Article and Find Full Text PDF

Introduction: Functioning neuroendocrine tumors (NETs) that do not respond to standard therapies are commonly considered for Peptide Receptor Radionuclide Therapy (PRRT). The benefit of Lu-DOTATATE PRRT in patients with progressive metastatic NET was analyzed and survival in multi-organ involvement.

Methods: Forty-one patients with refractory, progressive, or advanced symptomatic NETs, with or without previous treatment modalities were studied.

View Article and Find Full Text PDF

The CRY1-COP1-HY5 axis mediates blue-light regulation of Arabidopsis thermotolerance.

Plant Commun

January 2025

College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

High-temperature stress, also referred to as heat stress, often has detrimental effects on plant growth and development. Phytochromes have been implicated in regulating plant heat stress responses, but the role of blue-light receptors, such as cryptochromes, in plant blue light-dependent heat stress response has remained unclear. We found that the blue light receptor cryptochrome 1 (CRY1) negatively regulates heat stress tolerance (thermotolerance) in Arabidopsis.

View Article and Find Full Text PDF

G-CSF modulates innate and adaptive immunity via the ligand-receptor pathway of binding GCSFR in Flounder (Paralichthys olivaceus).

Fish Shellfish Immunol

January 2025

Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China. Electronic address:

Granulocyte colony stimulating factor (G-CSF) has been shown in mammalia to activate a series of signal transduction systems and exert various biological effects, such as controlling the differentiation, proliferation, and survival of granulocytes, promoting the movement of hematopoietic stem cells from the bone marrow to the bloodstream, and triggering the development of T cells, dendritic cells, and immune tolerance in transplants. In this study, the mRNA of flounder G-CSF (PoG-CSF) and its receptor (PoGCSFR) were detected and widely expressed in all examined tissues with the highest expression in peritoneal cells. G-CSF and GCSFR cells were observed to be abundantly distributed in the leukocytes from the peritoneal cavity, followed by head kidney.

View Article and Find Full Text PDF

Background: Hepatitis B is a liver infection caused by HBV. Infected individuals who fail to control the viral infection develop chronic hepatitis B and are at risk of developing life-threatening liver diseases, such as cirrhosis or liver cancer. Dendritic cells (DCs) play important roles in the immune response against HBV but are functionally impaired in patients with chronic hepatitis B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!