SLC6 family members and ABC transporters represent two extremes: SLC6 transporters are confined to the membrane proper and only expose small segments to the hydrophilic milieu. In ABC transporters the hydrophobic core is connected to a large intracellular (eponymous) ATP binding domain that is comprised of two discontiguous repeats. Accordingly, their folding problem is fundamentally different. This can be gauged from mutations that impair the folding of the encoded protein and give rise to clinically relevant disease phenotypes: in SLC6 transporters, these cluster at the protein-lipid interface on the membrane exposed surface. Mutations in ABC-transporters map to the interface between nucleotide binding domains and the coupling helices, which provide the connection to the hydrophobic core. Folding of these mutated ABC-transporters can be corrected with ligands/substrates that bind to the hydrophobic core. This highlights a pivotal role of the coupling helices in the folding trajectory. In contrast, insights into pharmacochaperoning of SLC6 transporters are limited to monoamine transporters - in particular the serotonin transporter (SERT) - because of their rich pharmacology. Only ligands that stabilize the inward facing conformation act as effective pharmacochaperones. This indicates that the folding trajectory of SERT proceeds via the inward facing conformation. Mutations that impair folding of SLC6 family members can be transmitted as dominant or recessive alleles. The dominant phenotype of the mutation can be rationalized, because SLC6 transporters are exported in oligomeric form from the endoplasmic reticulum (ER). Recessive transmission requires shielding of the unaffected gene product from the mutated transporter in the ER. This can be accounted for by a chaperone-COPII (coatomer protein II) exchange model, where proteinaceous ER-resident chaperones engage various intermediates prior to formation of the oligomeric state and subsequent export from the ER. It is likely that the action of pharmacochaperones is contingent on and modulated by these chaperones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059943 | PMC |
http://dx.doi.org/10.1016/j.phrs.2013.11.009 | DOI Listing |
ACS Chem Neurosci
January 2025
Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland.
The sodium-dependent membrane transporter SLC6A15 (BAT2) belongs to the SLC6 family, which comprises carriers of amino acids and monoamines. BAT2 is expressed in the central nervous system (CNS), including the glutaminergic and GABAergic system. SLC6A15 supplies neurons with neutral amino acids.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy.
J Struct Biol
December 2024
Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia. Electronic address:
Comput Struct Biotechnol J
December 2024
Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
NTT4 is one of the neutral amino acid transporters that regulate neural concentration of precursors for glutamate biosynthesis. Here, we provide insight into the structure of NTT4 and rationalize substrate selectivity. Furthermore, we demonstrate how the mutations associated with mental disabilities imply malfunction of the transporter at the molecular level.
View Article and Find Full Text PDFFront Mol Neurosci
August 2024
Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
As the first member of the solute carrier 6 (SLC6) protein family, the γ-aminobutyric acid (GABA) transporter 1 (GAT1, ), plays a pivotal role in the uptake of GABA from the synaptic cleft into neurons and astrocytes. This process facilitates the subsequent storage of GABA in presynaptic vesicles. The human gene is highly susceptible to missense mutations, leading to severe clinical outcomes, such as epilepsy, in the afflicted patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!