The olive mill wastewater as substrate for single cell oil production by Zygomycetes.

J Biotechnol

Unit of Microbiology, Division of Genetics, Cell and Development Biology, Department of Biology, University of Patras, Patras, Greece; Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. Electronic address:

Published: January 2014

The conversion of olive mill wastewater (OMW) into high added value lipids containing polyunsaturated fatty acids (PUFA), in parallel with a significant phenolic removal by selected strains of Zygomycetes, is reported here for the first time. The growth of Mortierella isabellina, Mortierella ramanniana, Cunninghamella echinulata, Mucor sp., Thamnidium elegans and Zygorhynchus moelleri on solidified media was not significantly affected by the presence of OMW used in the growth medium up to 50% (v/v). Kinetic parameter values and conversion yields, estimated using a mathematical model which was fitted on the experimental data originated from submerged cultures, shows the ability of some Zygomycetes (i.e. T. elegans and Z. moelleri) to grow on OMW and accumulate storage material, i.e. lipids rich in PUFA, and these findings open new perspectives in OMW management and valorization. In liquid media containing OMW as sole carbon source, T. elegans and Z. moelleri produced 4.4 and 3.5g/L cell mass in surface (SC) and submerged (SMC) cultures, respectively, containing around 60% (w/w) of lipids. Oleic and palmitic acids were the predominant fatty acids. Gamma-linolenic acid was found in high percentages (up to 17.7%, w/w) in the lipid of Z. moelleri, in SMC with OMW as sole carbon source, while PUFA biosynthesis was not favored in SC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2013.11.015DOI Listing

Publication Analysis

Top Keywords

olive mill
8
mill wastewater
8
fatty acids
8
elegans moelleri
8
omw sole
8
sole carbon
8
carbon source
8
omw
6
wastewater substrate
4
substrate single
4

Similar Publications

The improper disposal of olive mill wastewater (OMW) presents a significant environmental challenge for wastewater treatment plants (WWTPs) in the Gaza Strip. This study aims to evaluate the impact of OMW discharge on the operational efficiency of WWTPs, particularly during the olive harvesting season. To achieve this, samples were collected from both olive mills and WWTPs across the region and analyzed for key parameters such as chemical oxygen demand (COD), biological oxygen demand (BOD), phenols, oil and grease, and total suspended solids (TSS).

View Article and Find Full Text PDF

Olive mill wastewaters (OMWW) are characterized by a large concentration of pollutants, among which polyphenols represent a large part. This study investigated the effect of different dilutions of a culture medium enriched with olive-derived phenolic compounds on Chlorella vulgaris growth and its ability to degrade each one of them. In particular, polyphenols were precisely identified and quantified by HPLC-DAD analysis, showing high removal efficiency by C.

View Article and Find Full Text PDF

Visfatin is an adipokine with mediatory effects on inflammation. It is expressed at low levels in the pig stomach, but its role in the gastrointestinal (GI) tract is not well understood. This study explored visfatin expression and localisation in the stomach and duodenum of piglets fed varying levels of polyphenols derived from olive mill waste extract, known for their antioxidant and immunomodulatory properties.

View Article and Find Full Text PDF

Olive mill wastewater treatment using coagulation/flocculation and filtration processes.

Heliyon

November 2024

Saint Joseph University of Beirut, Faculty of Pharmacy, Department of Nutrition, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon.

Olive mill wastewater (OMWW), a pollutant resulting from the olive oil industry, poses a serious ecological challenge due to its high pollution load. This effluent is highly concentrated in chemical oxygen demand (COD), which is 200 times higher than that of sewage wastewater. Moreover, OMWW is characterized by a strong acidity, high content of fatty matter, and high concentration of phenolic compounds.

View Article and Find Full Text PDF

Olive mill wastewater (OMWW) is a byproduct of olive oil extraction that represents a critical environmental concern due to its potential adverse effects on ecosystems. Given these premises, spray-dried microparticles were designed and developed using maltodextrins as carriers to encapsulate OMWW bioactive compounds. The microparticles were manufactured using an easily scalable and sustainable spray-drying process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!