Adult zebrafish (Danio rerio) have a remarkable ability to restore function after an injury to the brain or spinal cord. The molecular and cellular mechanisms underlying this phenomenon are not fully understood. To enable investigation of these mechanisms we have developed an in vitro model system from the adult zebrafish brainstem, which can be maintained under serum-containing and serum-free conditions. While cultures are predominantly neuronal, they also contain glia and stem progenitor cells. Various stages of cellular differentiation are observed among both neuronal and non-neuronal populations. Quantitative morphological results revealed typical cellular growth over a two-week period. We argue that our novel brainstem culture model offers a powerful tool for the studies of axonal growth, neurogenesis, and regeneration in the adult zebrafish central nervous system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2013.11.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!