The climate sensitivity of carbon (δ(13)C), oxygen (δ(18)O) and hydrogen (δ(2)H) isotope signatures in tree-ring cellulose of Abies alba Mill. from a marginally industrialized area of Franconia (Germany) was analysed for the last 130 years. All isotopes preserve climatic signals up to c. 1950 AD. After 1950 we observe a clear reduction in climate sensitivity of δ(13)C and δ(2)H while δ(18)O - climate relations remain well pronounced. Nevertheless statistical tests implied that SO2 background emissions of West Germany had influenced isotope signatures long before 1950. The relationships between isotope values and concentrations of SO2, dust, O3 and NO2 at the regional level during the period 1979-2006 indicate that δ(13)C and δ(18)O were influenced primarily by SO2. The impact of SO2 on δ(2)H was negligible, but the observed reduction of climate sensitivity may be caused by synergic influences. The results have significant implications if isotope signatures from tree-rings from anthropogenic influenced regions are used to reconstruct past climate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2013.10.030DOI Listing

Publication Analysis

Top Keywords

climate sensitivity
16
isotope signatures
12
sensitivity carbon
8
tree-ring cellulose
8
abies alba
8
alba mill
8
franconia germany
8
reduction climate
8
isotope
5
so2
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!