A series of novel α-tetralone and α-tetralol derivatives was synthesized, and their binding affinities for 5-HT(2A) and D₂ receptors, the most important targets implicated in the anti-schizophrenia drug action, were evaluated to elucidate how substitutions in the aromatic ring of the pharmacophore affect to the affinity or selectivity for these receptors. The replacement of the H-7 in the tetrahydronaphthalene system by an amino group resulted in privileged 5-HT(2A) affinity of the 6-fluorobenzo[d]isoxazol derivative 36 and the alcohol 25 both showing a pK(i) value for 5-HT(2A) higher than 8.3 and good binding affinities for D₂ receptor leading to a Meltzer's ratio characteristic of an atypical antipsychotic profile. Additionally, a small collection of 3-aminomethyltetralone derivatives was prepared and examined here for their affinities and selectivities as 5-HT(2A)/D₂ dual ligands. Compound 11 shows the best profile with good pKi values for 5-HT(2A) and D₂ receptors leading to a Meltzer's ratio characteristic of a typical antipsychotic behaviour. These three compounds behaved as competitive antagonists of both 5-HT(2A) and D₂ receptors, and might be promising pharmacological tools for the investigation of the dual function of the 5HT(2A)-D₂ ligands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2013.10.066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!