Sex differences in stress effects on response and spatial memory formation.

Neurobiol Learn Mem

Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany. Electronic address:

Published: March 2014

Stress and stress hormones are known to affect learning and memory processes. However, although effects of stress on hippocampus-dependent declarative learning and memory are well-documented, relatively little attention has been paid to the impact of stress on striatum-dependent stimulus-response (S-R) learning and memory. Recent evidence indicates that glucocorticoid stress hormones shortly after learning enhance S-R memory consolidation, whereas stress prior to retention testing impairs S-R memory retrieval. Whether stress affects also the acquisition of S-R memories in humans remains unclear. For this reason, we examined here the effects of acute stress on S-R memory formation and contrasted these stress effects with those on hippocampus-dependent spatial memory. Healthy men and women underwent a stressor (socially evaluated cold pressor test, SECPT) or a control manipulation before they completed an S-R task and two spatial learning tasks. Memory was assessed one week later. Our data showed that stress impaired S-R memory performance in men but not in women. Conversely, spatial memory was impaired by stress in women but not in men. These findings provide further evidence that stress may alter learning and memory processes beyond the hippocampus. Moreover, our data underline that participants' sex may play a critical role in the impact of stress on multiple memory systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nlm.2013.11.020DOI Listing

Publication Analysis

Top Keywords

learning memory
16
s-r memory
16
stress
14
memory
13
spatial memory
12
stress effects
8
memory formation
8
stress hormones
8
memory processes
8
impact stress
8

Similar Publications

Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration.

Mol Cell Biochem

January 2025

State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.

Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria.

View Article and Find Full Text PDF

Ferroelectric and Optoelectronic Coupling Effects in Layered Ferroelectric Semiconductor-Based FETs for Visual Simulation.

Adv Sci (Weinh)

January 2025

Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.

Controlling polarization states of ferroelectrics can enrich optoelectronic properties and functions, offering a new avenue for designing advanced electronic and optoelectronic devices. Here, ferroelectric semiconductor-based field-effect transistors (FeSFETs) are fabricated, where the channel is a ferroelectric semiconductor (e.g.

View Article and Find Full Text PDF

Transitive inference, the ability to establish hierarchical relationships between stimuli, is typically tested by training with premise pairs (e.g., A + B-, B + C-, C + D-, D + E-), which establishes a stimulus hierarchy (A > B > C > D > E).

View Article and Find Full Text PDF

Introduction: Physical exercise has repeatedly been reported to have advantageous effects on brain functions, including learning and memory formation. However, objective tools to measure such effects are often lacking. Eyeblink conditioning is a well-characterized method for studying the neural basis of associative learning.

View Article and Find Full Text PDF

Optoelectronic synapse devices (OESDs) inspired by human visual systems enable to integration of light sensing, memory, and computing functions, greatly promoting the development of in-sensor computing techniques. Herein, dual-mode integration of bipolar response photodetectors (PDs) and artificial optoelectronic synapses based on ZnO/SnSe heterojunctions are presented. The function of the fabricated device can be converted between the PDs and OESDs by modulating the light intensity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!