Objectives: This study sought to explore whether subclinical alterations of sarcoplasmic reticulum (SR) Ca(2+) release through cardiac ryanodine receptors (RyR2) aggravate cardiac remodeling in mice carrying a human RyR2(R4496C+/-) gain-of-function mutation in response to pressure overload.

Background: RyR2 dysfunction causes increased diastolic SR Ca(2+) release associated with arrhythmias and contractile dysfunction in inherited and acquired cardiac diseases, such as catecholaminergic polymorphic ventricular tachycardia and heart failure (HF).

Methods: Functional and structural properties of wild-type and catecholaminergic polymorphic ventricular tachycardia-associated RyR2(R4496C+/-) hearts were characterized under conditions of pressure overload induced by transverse aortic constriction (TAC).

Results: Wild-type and RyR2(R4496C+/-) hearts had comparable structural and functional properties at baseline. After TAC, RyR2(R4496C+/-) hearts responded with eccentric hypertrophy, substantial fibrosis, ventricular dilation, and reduced fractional shortening, ultimately resulting in overt HF. RyR2(R4496C+/-)-TAC cardiomyocytes showed increased incidence of spontaneous SR Ca(2+) release events, reduced Ca(2+) transient peak amplitude, and SR Ca(2+) content as well as reduced SR Ca(2+)-ATPase 2a and increased Na(+)/Ca(2+)-exchanger protein expression. HF phenotype in RyR2(R4496C+/-)-TAC mice was associated with increased mortality due to pump failure but not tachyarrhythmic events. RyR2-stabilizer K201 markedly reduced Ca(2+) spark frequency in RyR2(R4496C+/-)-TAC cardiomyocytes. Mini-osmotic pump infusion of K201 prevented deleterious remodeling and improved survival in RyR2(R4496C+/-)-TAC mice.

Conclusions: The combination of subclinical congenital alteration of SR Ca(2+) release and pressure overload promoted eccentric remodeling and HF death in RyR2(R4496C+/-) mice, and pharmacological RyR2 stabilization prevented this deleterious interaction. These findings suggest potential clinical relevance for patients with acquired or inherited gain-of-function of RyR2-mediated SR Ca(2+) release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacc.2013.11.010DOI Listing

Publication Analysis

Top Keywords

ca2+ release
24
pressure overload
12
ryr2r4496c+/- hearts
12
ca2+
9
sarcoplasmic reticulum
8
reticulum ca2+
8
pump failure
8
response pressure
8
catecholaminergic polymorphic
8
polymorphic ventricular
8

Similar Publications

Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.

View Article and Find Full Text PDF

LIPUS activated piezoelectric pPLLA/SrSiO composite scaffold promotes osteochondral regeneration through P2RX1 mediated Ca signaling pathway.

Biomaterials

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China. Electronic address:

Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method.

View Article and Find Full Text PDF

MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation.

J Cell Biol

March 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.

View Article and Find Full Text PDF

Background: The roles of Aβ in the pathogenesis of Alzheimer 's disease (AD) include disruption of synaptic communication/function and synaptic plasticity mechanisms thought to underlie learning and memory. Exactly how these abnormal processes arise is incompletely understood, but evidence suggests that dysregulation of intracellular Ca levels is involved in alterations of neuronal excitability, synaptic remodeling, and neurodegeneration in AD. Our lab has focused on the potential involvement of voltage-gated potassium channels (VGKCs) in these processes, particularly Kv1.

View Article and Find Full Text PDF

Infected alveolar bone defects pose challenging clinical issues due to disrupted intrinsic healing mechanisms. Thus, the employment of advanced biomaterials enabling the modulation of several aspects of bone regeneration is necessary. This study investigated the effect of multi-functional nanoparticles on anti-inflammatory/osteoconductive characteristics and bone repair in the context of inflamed bone abnormalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!