Cell-based screening assays are now widely used for identifying compounds that serve as ion channel modulators. However, instrumentation for the automated, real-time analysis of ion flux from clonal and primary cells is lacking. This study describes the initial development of an ion-sensitive field effect transistor (ISFET)-based screening assay for the acquisition of K(+) efflux data from cells cultured in multi-well plates. Silicon-based K(+)-sensitive ISFETs were tested for their electrical response to varying concentrations of KCl and were found to display a linear response relationship to KCl in the range of 10 µM-1 mM. The ISFETs, along with reference electrodes, were inserted into fast-flow chambers containing either human colonic T84 epithelial cells or U251-MG glioma cells. Application of the Ca(2+) ionophore A23187 (1 µM), to activate Ca(2+)-activated non-selective cation (NSC) channels (T84 cells) and large conductance Ca(2+)-activated K(+) (BK) channels (U251 cells), resulted in time-dependent increases in the extracellular K(+) concentration ([K(+)]o) as measured with the ISFETs. Treatment of the cells with blockers of either the NSC or BK channels, caused a strong inhibition of the A23187-induced increase in [K(+)]o. These results were consistent with ion current measurements obtained using the whole-cell arrangement of the patch clamp procedure. In addition, K(+) efflux data could be acquired in parallel from multiple cell chambers using the ISFET sensors. Given the non-invasive properties of the probes, the ISFET-based assay should be adaptable for screening ion channels in various cell types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939828 | PMC |
http://dx.doi.org/10.1016/j.bios.2013.11.038 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!