The removal efficiency (RE) of gas-phase hydrogen sulfide (H), methanol (M) and α-pinene (P) in a biotrickling filter (BTF) was modeled using artificial neural networks (ANNs). The inlet concentrations of H, M, P, unit flow and operation time were used as the model inputs, while the outputs were the RE of H, M and P, respectively. After testing and validating the results, an optimal network topology of 5-8-3 was obtained. The model predictions were analyzed using Casual index (CI) values. M removal in the BTF was influenced positively by the inlet concentration of M in mixture (CI=3.79), while the removal of P and H were influenced more by the time of BTF operation (CI=25.36, 15.62). The BTF was subjected to different types of short-term shock-loads: 5-h shock-load of HMP mixture simultaneously, and 2.5-h shock-load of either H, M, or P, individually. It was observed that, short-term shock-loads of individual pollutants (M or H) did not significantly affect their own removal, but the removal of P was affected by 50%. The results from this study also show the sensitiveness of the well-acclimated BTF to handle sudden load variations and also revival capability of the BTF when pre-shock conditions were restored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2013.11.023 | DOI Listing |
J Hazard Mater
December 2024
Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain. Electronic address:
In this study, the performance of a pilot-scale biotrickling filter (BTF) for anoxic hydrogen sulfide (HS) removal from real biogas was evaluated over 226 days. The BTF, inoculated with activated sludge from a nearby wastewater treatment plant, operated in an industrial environment with raw biogas from an anaerobic digester fed with municipal solid waste. The operating strategy was based on controlling nitrate consumption by sulfur-oxidizing nitrate-reducing (SO-NR) bacteria.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Environment & Natural Resources, Zhejiang University of Science & Technology, HangZhou 310023, China; College of Environment, Zhejiang University of Technology, HangZhou 310014, China. Electronic address:
Biotrickling filter (BTF) technology is inefficient in the treatment of Cl-containing volatile organic compounds (VOCs) such as chlorobenzene (CB). This study adopted non-thermal plasma (NTP) as a pretreatment and conducted in-depth analyses, especially in microorganisms, to investigate strengthening mechanism of a NTP to a BTF in the process. The introduction of NTP enhance efficiency of CB removal from 65 % to 90 %, and CO generation from 60 % to 85 %.
View Article and Find Full Text PDFEnviron Monit Assess
November 2024
Research and Technology Group, Bidboland Gas Refining Company, Omidiyeh, Iran.
Removing hydrogen sulfide (HS) toxic and corrosive gas from the natural gas processing and utilization industry is a challenging problem for managers of these industries. This problem involves different economic, environmental, and health issues. Various technologies have been employed to remove the HS gas from these industries, and choosing appropriate HS removal technologies is a complex multi-criteria decision-making (MCDM) problem.
View Article and Find Full Text PDFBioprocess Biosyst Eng
November 2024
Key Laboratory of Beijing On Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.
Immobilized fillers have been increasingly utilized in biotrickling filters (BTFs) due to their positive impact on shock load resistance and recovery performance. However, due to the inherent characteristics of its immobilized carrier, the immobilized filler is prone to swelling during the long-term operation of the system, resulting in increased pressure drop. Polyurethane (PU) sponge was used as the cross-linked skeleton of immobilized filler and compared with direct emulsified cross-linked immobilized filler for treating ethylbenzene gas.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!