MicroRNA: key gene expression regulators.

Fertil Steril

Fundación Instituto Valenciano de Infertilidad (FIVI) and Instituto Universitario IVI/INCLIVA, Valencia University, Spain; IVIOMICS S.L., Paterna, Valencia, Spain; Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, California.

Published: June 2014

MicroRNAs, also called miRNAs, are small 19-22 nucleotide (nt) sequences of noncoding RNA that work as endogenous epigenetic gene expression regulators. They are transcribed as large primary miRNAs or pre-miRNAs by RNA polymerase II and III, and are subsequently processed by the ribonucleases Drosha and Dicer to give rise to their mature forms. These mature miRNAs are then incorporated into the RISC complex (RNA-induced silencing complex) where they bind to the 3'-UTR mRNA complementary region, which induces their degradation or inhibits their translation, resulting in gene silencing. MicroRNAs are essential for embryo, cell, and tissue development, regulating cell differentiation, proliferation, and apoptosis, hence their importance in human reproduction. Currently, methods of detecting these molecules include real-time polymerase chain reaction, microarrays, in situ hybridization, and deep sequencing as well as novel approaches such as Nanostring nCounter. However, functional characterization is still required to confirm their biologic roles. Furthermore, miRNAs are not only found in cells but also have been identified in most biologic fluids, including serum, plasma, and saliva. Once miRNAs are secreted by cells, they are either incorporated into microvesicles or become associated with proteins, which protect them from RNase degradation so that they may remain intact for long periods of time. This suggests that they might also mediate paracrine signaling via different pathways and could therefore represent potential new biomarkers. Indeed, many pharmaceutic companies have recently started to investigate these molecules as possible routes to develop new human disease treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fertnstert.2013.10.042DOI Listing

Publication Analysis

Top Keywords

gene expression
8
expression regulators
8
mirnas
5
microrna key
4
key gene
4
regulators micrornas
4
micrornas called
4
called mirnas
4
mirnas small
4
small 19-22
4

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!