Background: Malaria treatment efforts are hindered by the rapid emergence and spread of drug resistant parasites. Simple assays to monitor parasite drug response in direct patient samples (ex vivo) can detect drug resistance before it becomes clinically apparent, and can inform changes in treatment policy to prevent the spread of resistance.
Methods: Parasite drug responses to amodiaquine, artemisinin, chloroquine and mefloquine were tested in approximately 400 Plasmodium falciparum malaria infections in Thiès, Senegal between 2008 and 2011 using a DAPI-based ex vivo drug resistance assay. Drug resistance-associated mutations were also genotyped in pfcrt and pfmdr1.
Results: Parasite drug responses changed between 2008 and 2011, as parasites became less sensitive to amodiaquine, artemisinin and chloroquine over time. The prevalence of known resistance-associated mutations also changed over time. Decreased amodiaquine sensitivity was associated with sustained, highly prevalent mutations in pfcrt, and one mutation in pfmdr1 - Y184F - was associated with decreased parasite sensitivity to artemisinin.
Conclusions: Directly measuring ex vivo parasite drug response and resistance mutation genotyping over time are useful tools for monitoring parasite drug responses in field samples. Furthermore, these data suggest that the use of amodiaquine and artemisinin derivatives in combination therapies is selecting for increased drug tolerance within this population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924193 | PMC |
http://dx.doi.org/10.1186/1475-2875-12-441 | DOI Listing |
Int J Mol Sci
December 2024
Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
, the causative agent of toxoplasmosis, is a protozoan parasite capable of infecting a wide range of hosts, posing significant health risks, particularly to immunocompromised individuals and congenital transmission. Current therapeutic options primarily target the active tachyzoite stage but are limited by issues such as toxicity and incomplete efficacy. As a result, there is an urgent need for alternative therapies that can selectively target parasite-specific mechanisms critical for metabolic processes and host-parasite interactions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland.
Multidrug-resistant bacteria represent a significant challenge in the treatment of bacterial infections, often leading to therapeutic failures. This issue underlines the need to develop strategies that improve the efficacy of conventional antibiotic therapies. In this study, we aimed to assess whether a plant-derived compound, α-mangostin, and photodynamic therapy (PDT) could enhance the antibacterial activity of ciprofloxacin against uropathogenic strains of and .
View Article and Find Full Text PDFMolecules
January 2025
Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru.
Leishmaniasis, a neglected tropical disease caused by species, presents serious public health challenges due to limited treatment options, toxicity, high costs, and drug resistance. In this study, the in vitro potential of malvidin and echioidinin is examined as antileishmanial agents against , , and , comparing their effects to amphotericin B (AmpB), a standard drug. Malvidin demonstrated greater potency than echioidinin across all parasite stages and species.
View Article and Find Full Text PDFMolecules
December 2024
Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico.
Protein arginine methyltransferase 5 (PRMT5) is an enzyme that produces monomethyl arginine (MMA) and symmetric dimethyl arginine (sDMA), post-translational modifications that regulate several cellular processes, including stage conversion in parasitic protozoans. , the etiologic agent of human amebiasis, has two stages in its life cycle, the trophozoite, which is the replicative form, and the cyst, corresponding to the infective phase. The study of the molecular mechanisms that regulate differentiation in this parasite has been overdue because of a lack of efficient protocols for in vitro encystment.
View Article and Find Full Text PDFDiagn Pathol
January 2025
Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China.
Background: Fasciolopsis buski is a large fluke that parasitises the human small intestine, with its infection in the biliary tract being even rarer. Given its relatively rare occurrence in recent years, the clinical diagnosis of F. buski infections can pose certain challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!