A facile and versatile approach for the preparation of antifouling and antimicrobial polymer membranes has been developed on the basis of bioinspired polydopamine (PDA) in this work. It is well-known that a tightly adherent PDA layer can be generated over a wide range of material surfaces through a simple dip-coating process in dopamine aqueous solution. The resulting PDA coating is prone to be further surface-tailored and functionalized via secondary treatments because of its robust reactivity. Herein, a typical hydrophobic polypropylene (PP) porous membrane was first coated with a PDA layer and then further modified by poly(N-vinyl pyrrolidone) (PVP) via multiple hydrogen-bonding interactions between PVP and PDA. Data of water contact angle measurements showed that hydrophilicity and wettability of the membranes were significantly improved after introducing PDA and PVP layers. Both permeation fluxes and antifouling properties of the modified membranes were enhanced as evaluated in oil/water emulsion filtration, protein filtration, and adsorption tests. Furthermore, the modified membranes showed remarkable antimicrobial activity after iodine complexation with the PVP layer. The PVP layer immobilized on the membrane had satisfying long-term stability and durability because of the strong noncovalent forces between PVP and PDA coating. The strategy of material surface modification reported here is substrate-independent, and applicable to a broad range of materials and geometries, which allows effective development of materials with novel functional coatings based on the mussel-inspired surface chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am403405c | DOI Listing |
Polymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Polybenzoxazines (PBzs), a class of high-performance thermosetting polymers, have gained significant attention for their exceptional thermal stability, mechanical properties, and chemical resistance, making them ideal for aerospace, electronics, and biomedical applications. Recent advancements emphasize their antimicrobial potential, attributed to unique structural properties and the ability to incorporate bio-active functional groups. This review highlights the synthesis, antimicrobial mechanisms, and applications of PBzs and their bio-based derivatives, focusing on sustainable materials science.
View Article and Find Full Text PDFMicroorganisms
January 2025
CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
With the increasing demand for improved food preservation, conventional waterproof food packaging has proven inadequate because of its limited functionality. Although incorporating features such as antibacterial and antioxidant properties into packaging enhances protection, it can compromise the hydrophobicity of the involved material, thereby increasing the risk of contamination from external sources. To address this challenge, a robust and reliable barrier capable of simultaneously integrating multiple protective functions is required.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Biomass Science and Engineering, Key Laboratory of Biomass Fibers for Medical Care in Textile Industry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
The demand for antibacterial, antifungal, and deodorant textiles has grown significantly with the increasing concern for health and hygiene. In this study, novel functional cotton fabric (EE) with long-lasting antibacterial, antifungal, and deodorant activity was prepared by graft modification with triclosan and eugenol. EE shows more than 99% antibacterial and antifungal activity against , , , and through mechanisms such as inhibiting enzyme activity and disrupting cell structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!