Toward composite molecular signatures in the phenotyping of asthma.

Ann Am Thorac Soc

1 Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and.

Published: December 2013

The complex biology of respiratory diseases such as asthma is feeding the discovery of various disease phenotypes. Although the clinical management of asthma phenotypes by using a single biomarker (e.g., sputum eosinophils) is successful, emerging evidence shows the requirement of multiscale, high-dimensional biological and clinical measurements to capture the complexity of various asthma phenotypes. High-throughput "omics" technologies, including transcriptomics, proteomics, lipidomics, and metabolomics, are increasingly standardized for biomarker discovery in asthma. The leading principle is obeying available guidelines on omics analysis, thereby strictly limiting false discovery. In this review we address the concept of transcriptomics using microarrays or next-generation RNA sequencing and their applications in asthma, highlighting the strengths and limitations of both techniques, and review metabolomics in exhaled air (breathomics) as a noninvasive alternative for sampling the airways directly. These developments will inevitably lead to the integration of molecular signatures in the phenotyping of asthma and other diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1513/AnnalsATS.201302-035AWDOI Listing

Publication Analysis

Top Keywords

molecular signatures
8
signatures phenotyping
8
phenotyping asthma
8
asthma phenotypes
8
asthma
7
composite molecular
4
asthma complex
4
complex biology
4
biology respiratory
4
respiratory diseases
4

Similar Publications

Integrating the milk microbiome signatures in mastitis: milk-omics and functional implications.

World J Microbiol Biotechnol

January 2025

Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.

Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis.

View Article and Find Full Text PDF

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.

View Article and Find Full Text PDF

The neurobiological mechanisms driving the ictal-interictal fluctuations and the chronification of migraine remain elusive. We aimed to construct a composite genetic-microRNA model that could reflect the dynamic perturbations of the disease course and inform the pathogenesis of migraine. We prospectively recruited four groups of participants, including interictal episodic migraine (i.

View Article and Find Full Text PDF

Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!