We report on the electrical detection of the dynamical part of the spin-pumping current emitted during ferromagnetic resonance using inverse spin Hall effect methods. The experiment is performed on a YIG|Pt bilayer. The choice of yttrium iron garnet (YIG), a magnetic insulator, ensures that no charge current flows between the two layers and only the pure spin current produced by the magnetization dynamics is transferred into the adjacent strong spin-orbit Pt layer via spin pumping. To avoid measuring the parasitic eddy currents induced at the frequency of the microwave source, a resonance at half the frequency is induced using parametric excitation in the parallel geometry. Triggering this nonlinear effect allows us to directly detect on a spectrum analyzer the microwave component of the inverse spin Hall effect voltage. Signals as large as 30 μV are measured for precession angles of a couple of degrees. This direct detection provides a novel efficient means to study magnetization dynamics on a very wide frequency range with great sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.111.217204 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!