We calculate next-to-leading order (NLO) QCD corrections to electroweak Higgs boson plus three jet production. Both vector boson fusion (VBF) and Higgs-strahlung type contributions are included along with all interferences. The calculation is implemented within the Matchbox NLO framework of the Herwig++ event generator.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.111.211802DOI Listing

Publication Analysis

Top Keywords

electroweak higgs
8
higgs boson
8
boson three
8
three jet
8
jet production
8
production next-to-leading-order
4
next-to-leading-order qcd
4
qcd calculate
4
calculate next-to-leading
4
next-to-leading order
4

Similar Publications

SIMUnet: an open-source tool for simultaneous global fits of EFT Wilson coefficients and PDFs.

Eur Phys J C Part Fields

August 2024

DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA UK.

We present the open-source SIMUnet code, designed to fit Standard Model Effective Field Theory (SMEFT) Wilson coefficient alongside Parton Distribution Functions (PDFs) of the proton. SIMUnet can perform SMEFT global fits, as well as simultaneous fits of the PDFs and of an arbitrarily large number of SMEFT degrees of freedom, by including both PDF-dependent and PDF-independent observables. SIMUnet can also be used to determine whether the effects of any New Physics models can be fitted away in a global fit of PDFs.

View Article and Find Full Text PDF

A study of the anomalous couplings of the Higgs boson to vector bosons, including -violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton-proton collision data collected with the CMS detector at the CERN LHC during 2016-2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 . The different-flavor dilepton final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson.

View Article and Find Full Text PDF

We present the results for the complete next-to-leading order electroweak corrections to pp→HH at the Large Hadron Collider, focusing on the dominant gluon-gluon fusion process. While the corrections at the total cross-section level are approximately -4%, those near the energy of HH production threshold exceed +15%, and corrections at the high-energy region are around -10%, leading to a shape distortion for the differential distributions. Our findings substantially diminish the theoretical uncertainties associated with this pivotal process, providing valuable input for understanding the shape of the Higgs boson potential upon comparison with experimental measurements.

View Article and Find Full Text PDF

Extending the Higgs sector of the standard model (SM) by just one additional Higgs doublet field leads to the two-Higgs-doublet model (2HDM). In the type-I Z_{2}-symmetric limit of the 2HDM, all the five new physical Higgs states can be fairly light, O(100)  GeV or less, without being in conflict with current data from the direct Higgs boson searches and the B-physics measurements. In this Letter, we establish that the new neutral as well as the charged Higgs bosons in this model can all be simultaneously observable in the multi-b final state.

View Article and Find Full Text PDF

Motivated by the stability of the electroweak Higgs vacuum we consider the possibility that the Standard Model might work up to large scales between about [Formula: see text] GeV and close to the Planck scale. A plausible scenario is an emergent Standard Model with gauge symmetries originating in some topological-like phase transition deep in the ultraviolet. In this case, the cosmological constant scale and neutrino masses should be of similar size, suppressed by factor of the large scale of emergence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!