Strong evidence suggests that systemic inflammation and central adiposity contribute to and perpetuate metabolic syndrome. All of these alterations predispose individuals to type 2 diabetes mellitus (T2DM), cardiovascular disease, as well as Alzheimer's disease (AD), all characterized by chronic inflammatory status. On the other hand, extensive abnormalities in insulin and insulin-like growth factor I (IGF-I) and IGF-II signaling mechanisms in brains with AD have been demonstrated, suggesting that AD could be a third form of diabetes. The Src homology domain-containing inositol 5-phosphatase 2 (SHIP2) has an important role in the insulin pathway because its over-expression causes impairment of insulin/IGF-1 signaling. Because some single-nucleotide polymorphisms (SNP) of the gene encoding SHIP2 were significantly associated in T2DM patients with metabolic syndrome and some related conditions, we decided to conduct a case-control study on this gene, analyzing AD and T2DM subjects as cases and young, old, and centenarians as controls. Our results suggest a putative correlation between the the rs144989913 SNP and aging, both successful and unsuccessful, rather than age-related diseases. Because this SNP is an insertion/deletion of 28 bp, it might cause an alteration in SHIP2 expression. It is noteworthy that SHIP2 has been demonstrated to be a potent negative regulator of insulin signaling and insulin sensitivity. Many studies demonstrated the association of the insulin/IGF1 pathway with aging and longevity, so it is tempting to speculate that the found association with SHIP2 and aging might depend on its effect on the insulin/IGF-1 pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1089/rej.2013.1541DOI Listing

Publication Analysis

Top Keywords

insulin pathway
8
metabolic syndrome
8
ship2
6
insulin
5
ship2 "new"
4
"new" insulin
4
pathway
4
pathway target
4
aging
4
target aging
4

Similar Publications

Background: The widespread use of gold nanoparticles (AuNPs) in consumer and medical products necessitates investigation into their potential developmental toxicity.

Aim Of The Work: This study investigated the systemic effects of in-utero AuNP exposure on developing male rat offspring, focusing on metabolic, organ-specific, and cellular pathways.

Materials And Methods: Pregnant rats were intravenously administered AuNPs (5, 10, 15, or 20 mg/kg) or saline from gestational day 1 to birth.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

: Rat sarcoma (Ras) proteins, Kirsten, Harvey, and Neuroblastoma rat sarcoma viral oncogene homolog (KRAS, HRAS, and NRAS, respectively), are a family of GTPases, which are key regulators of cellular growth, differentiation, and apoptosis through signal transduction pathways modulated by growth factors that have been recognized to be dysregulated in PCOS. This study explores Ras signaling proteins and growth factor-related proteins in polycystic ovary syndrome (PCOS). : In a well-validated PCOS database of 147 PCOS and 97 control women, plasma was batch analyzed using Somascan proteomic analysis for circulating KRas, Ras GTPase-activating protein-1 (RASA1), and 45 growth factor-related proteins.

View Article and Find Full Text PDF

Insulin resistance (IR) disrupts hepatic glucose metabolism and mitochondrial function, which contributes to metabolic disorders. The present study examined the effects of tomatine on glucose metabolism in high-glucose-induced IR hepatocytes and explored its underlying mechanisms using AML12 and HepG2 cell models. The results showed that tomatine did not exhibit cytotoxic effects.

View Article and Find Full Text PDF

Fenvalerate exposure induces AKT/AMPK-dependent alterations in glucose metabolism in hepatoma cells.

Front Pharmacol

February 2025

Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing Jishuitan Hospital, Beijing, China.

Background: Fenvalerate (Fen) is a synthetic pyrethroid insecticide significantly associated with an increased risk of type 2 diabetes. Tumor cells exhibit a shift in glucose metabolism, known as the Warburg effect. Accordingly, we aimed to elucidate whether Fen interferes with insulin signaling and affects hepatoma cell metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!