Regulation of with-no-lysine kinase signaling by Kelch-like proteins.

Biol Cell

Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.

Published: February 2014

In 2001, with-no-lysine (WNK) kinases were identified as the genes responsible for the human hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII). It took a further 6 years to clarify that WNK kinases participate in a signaling cascade with oxidative stress-responsive gene 1 (OSR1), Ste20-related proline-alanine-rich kinase (SPAK), and thiazide-sensitive NaCl cotransporter (NCC) in the kidney and the constitutive activation of this signaling cascade is the molecular basis of PHAII. Since this discovery, the WNK-OSR1/SPAK-NCC signaling cascade has been shown to be involved not only in PHAII but also in the regulation of blood pressure under normal and pathogenic conditions, such as hyperinsulinemia. However, the molecular mechanisms of WNK kinase regulation by dietary and hormonal factors and by PHAII-causing mutations remain poorly understood. In 2012, two additional genes responsible for PHAII, Kelch-like 3 (KLHL3) and Cullin3, were identified. At the time of their discovery, the molecular mechanisms underlying the interaction between these genes and their involvement in PHAII were unknown. Here we review the pathophysiological roles of the WNK signaling cascade clarified to date and introduce a new mechanism of WNK kinase regulation by KLHL3 and Cullin3, which provides insight on previously unknown mechanisms of WNK kinase regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162998PMC
http://dx.doi.org/10.1111/boc.201300069DOI Listing

Publication Analysis

Top Keywords

signaling cascade
16
wnk kinase
12
kinase regulation
12
wnk kinases
8
genes responsible
8
molecular mechanisms
8
mechanisms wnk
8
klhl3 cullin3
8
wnk
6
regulation
5

Similar Publications

Pharmacological, computational, and mechanistic insights into triptolide's role in targeting drug-resistant cancers.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia.

As a promising candidate for tackling drug-resistant cancers, triptolide, a diterpenoid derived from the Chinese medicinal plant Tripterygium wilfordii, has been developed. This review summarizes potential antitumor activities, including the suppression of RNA polymerase II, the suppression of heat shock proteins (HSP70 and HSP90), and the blockade of NF-kB signalling. Triptolide is the first known compound to target cancer cells specifically but spare normal cells, and it has success in treating cancers that are difficult to treat, including pancreatic, breast, and lung cancers.

View Article and Find Full Text PDF

Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available.

View Article and Find Full Text PDF

2-phenylchromen-4-one, commonly known as flavone, plays multifaceted roles in biological response that can be abundantly present in natural sources. The methoxy group in naturally occurring flavones promotes cytotoxic activity in various cancer cell lines by targeting protein markers, in facilitating ligand-protein binding mechanisms and activating cascading downstream signaling pathways leading to cell death. However, the lipophilic nature of these analogs is a key concern as it impacts drug membrane transfer.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins.

View Article and Find Full Text PDF

The scorpion Karsch is edible and has been an essential resource in traditional Chinese medicine for treating numerous diseases. In this study, two small peptides from hydrolysates were examined to elucidate their potential against gastric cancer. The small peptides (AK and GK) were identified using the LC-QTOF-MS-based approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!