Spatial and temporal variations in stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopic composition of symbiotic scleractinian corals.

PLoS One

Laboratoire d'excellence « CORAIL », USR 3278 CNRS-EPHE, Centre de Recherches Insulaires et Observatoire de l'Environnement, Papetoai, Moorea, Polynésie Française ; Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa.

Published: September 2014

Tropical scleractinian corals are considered autotrophic as they rely mainly on photosynthesis-derived nutrients transferred from their photosymbionts. Corals are also able to capture and ingest suspended particulate organic matter, so heterotrophy can be an important supplementary trophic pathway to optimize coral fitness. The aim of this in situ study was to elucidate the trophic status of 10 coral species under contrasted environmental conditions in a French Polynesian lagoon. Carbon (δ(13)C) and nitrogen (δ(15)N) isotopic compositions of coral host tissues and photosymbionts were determined at 3 different fringing reefs during wet and dry seasons. Our results highlighted spatial variability in stable isotopic compositions of both coral host tissues and photosymbionts. Samples from the site with higher level of suspended particulate matter were (13)C-depleted and (15)N-enriched relative to corals and photosymbionts from less turbid sites. However, differences in both δ(13)C and δ(15)N between coral host tissues and their photosymbionts (Δ(host-photosymbionts 13)C and Δ(host-photosymbionts 15)N) were small (0.27 ± 0.76‰ and 1.40 ± 0.90‰, respectively) and similar at all sites, thus indicating no general increases in the heterotrophic pathway. Depleted δ(13)C and enriched δ(15)N values of coral host tissues measured at the most turbid site were explained by changes in isotopic composition of the inorganic nutrients taken up by photosymbionts and also by changes in rate of isotopic fractionation with environmental conditions. Our results also highlighted a lack of significant temporal variations in δ(13)C and δ(15)N values of coral host and photosymbiont tissues and in Δ(host-photosymbionts 13)C and Δ(host-photosymbionts 15)N values. This temporal stability indicated that corals remained principally autotrophic even during the wet season when photosymbiont densities were lower and the concentrations of phytoplankton were higher. Increased coral heterotrophy with higher food availability thus appears to be species-specific.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846910PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081247PLOS

Publication Analysis

Top Keywords

coral host
20
host tissues
16
tissues photosymbionts
12
temporal variations
8
carbon δ13c
8
δ13c nitrogen
8
nitrogen δ15n
8
δ15n isotopic
8
isotopic composition
8
scleractinian corals
8

Similar Publications

Purpose: Chronic graft-versus-host-disease (cGVHD), an inflammatory condition affecting allogeneic hematopoietic cell transplantation (HCT) survivors, is associated with a range of debilitating physical and psychological sequela. Yet HCT recipients with cGVHD are virtually absent from survivorship intervention research. We conducted a randomized clinical trial to evaluate the feasibility and preliminary efficacy of a multidisciplinary group coping skills intervention (Horizons) tailored to meet these patients' unique needs.

View Article and Find Full Text PDF

The clownfish - sea anemone system is a great example of symbiotic mutualism where host «toxicity» does not impact its symbiont partner, although the underlying protection mechanism remains unclear. The regulation of nematocyst discharge in cnidarians involves N-acetylated sugars like sialic acid, that bind chemoreceptors on the tentacles of sea anemones, leading to the release of stings. It has been suggested that clownfish could be deprived of sialic acid on their skin surface, sparing them from being stung and facilitating mutualism with sea anemones.

View Article and Find Full Text PDF

The bacterial pathogen causes disease in coral species worldwide. The mechanisms of coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS).

View Article and Find Full Text PDF

Coral reefs worldwide are threatened by increasing ocean temperatures because of the sensitivity of the coral-algal symbiosis to thermal stress. Reef-building corals form symbiotic relationships with dinoflagellates (family Symbiodiniaceae), including those species which acquire their initial symbiont complement predominately from their parents. Changes in the composition of symbiont communities, through the mechanisms of symbiont shuffling or switching, can modulate the host's thermal limits.

View Article and Find Full Text PDF

Heat-tolerant subtropical Porites lutea may be better adapted to future climate change than tropical one in the South China Sea.

Sci Total Environ

January 2025

Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China. Electronic address:

Coral reefs are degrading at an accelerating rate owing to climate change. Understanding the heat stress tolerance of corals is vital for their sustainability. However, this tolerance varies substantially geographically, and information regarding coral responses across latitudes is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!