Ecological intensification, i.e. relying on ecological processes to replace chemical inputs, is often presented as the ideal alternative to conventional farming based on an intensive use of chemicals. It is said to both maintain high yield and provide more robustness to the agroecosystem. However few studies compared the two types of management with respect to their consequences for production and robustness toward perturbation. In this study our aim is to assess productive performance and robustness toward diverse perturbations of a Cacao agroecosystem managed with two contrasting groups of strategies: one group of strategies relying on a high level of pesticides and a second relying on low levels of pesticides. We conducted this study using a dynamical model of a Cacao agroecosystem that includes Cacao production dynamics, and dynamics of three insects: a pest (the Cacao Pod Borer, Conopomorpha cramerella) and two characteristic but unspecified beneficial insects (a pollinator of Cacao and a parasitoid of the Cacao Pod Borer). Our results showed two opposite behaviors of the Cacao agroecosystem depending on its management, i.e. an agroecosystem relying on a high input of pesticides and showing low ecosystem functioning and an agroecosystem with low inputs, relying on a high functioning of the ecosystem. From the production point of view, no type of management clearly outclassed the other and their ranking depended on the type of pesticide used. From the robustness point of view, the two types of managements performed differently when subjected to different types of perturbations. Ecologically intensive systems were more robust to pest outbreaks and perturbations related to pesticide characteristics while chemically intensive systems were more robust to Cacao production and management-related perturbation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846552PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080352PLOS

Publication Analysis

Top Keywords

cacao agroecosystem
16
relying high
12
cacao
9
production robustness
8
types management
8
cacao production
8
cacao pod
8
pod borer
8
point view
8
intensive systems
8

Similar Publications

This study tested the hypothesis that cocoa monoculture (MS) and cocoa-açai agroforestry systems (AFS) may influence the microbial community structure and populations of plant growth-promoting bacteria (PGPR). Accordingly, the aim was to analyze the microbial community structure and PGPR populations in different agroecosystems in the Brazilian Amazon. To achieve this, the rhizosphere microbial community of cocoa and açai plants in both Amazonian seasons (dry and rainy) was analyzed using culture-dependent (PGPR screening) and -independent methods [PCR-DGGE based on , , H gene, and intergenic region (ITS) of fungi].

View Article and Find Full Text PDF

Implementation of pre-harvest techniques in emerging agroforestry systems to increase the yield of cocoa tree ( L.).

Heliyon

March 2023

Engineering Faculty, Universidad Autonoma de Querétaro, Cerro de las Campanas, C.P. 76010, Santiago de Querétaro, Querétaro, Mexico.

Cocoa is one of the most important tropical fruits worldwide, its importance lies in its use in the food, cosmetic and pharmaceutical industries. Cocoa yield has been affected by different environmental, cultural and phytosanitary aspects. The emergence of new growing areas allows exploring the possibility of generating new economic and ecological systems that comply with current trends in organic farming.

View Article and Find Full Text PDF

In the tropics, combining food security with biodiversity conservation remains a major challenge. Tropical agroforestry systems are among the most biodiversity-friendly and productive land-use systems, and 70% of cocoa is grown by >6 million smallholder farmers living on <2$ per day. In cacao's main centre of diversification, the western Amazon region, interest is growing to achieve premium prices with the conversion of high-yielding, but mostly bulk-quality cacao to native fine-flavor cacao varieties, culturally important since pre-Columbian times.

View Article and Find Full Text PDF

While many molecular studies have documented arbuscular mycorrhizal fungi (AMF) communities in temperate ecosystems, very few studies exist in which molecular techniques have been used to study tropical AMF communities. Understanding the composition of AMF communities in tropical areas gains special relevance as crop productivity in typically low fertility tropical soils can be improved with the use of AMF. We used a hierarchical sampling approach in which we sampled soil from cocoa (Theobroma cacao L.

View Article and Find Full Text PDF

Habitat determinants of golden-headed lion tamarin (Leontopithecus chrysomelas) occupancy of cacao agroforests: Gloomy conservation prospects for management intensification.

Am J Primatol

September 2020

Departamento de Ecologia, Applied Ecology and Conservation Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil.

Organismal distributions in human-modified landscapes largely depend on the capacity of any given species to adapt to changes in habitat structure and quality. The golden-headed lion tamarin (GHLT; Leontopithecus chrysomelas) is an Endangered primate from the Brazilian Atlantic Forest whose remaining populations occupy heterogeneous landscapes consisting primarily of shade cacao (Theobroma cacao) agroforestry, locally known as cabrucas. This cash crop can coexist with high densities of native tree species and holds a significant proportion of the native fauna, but its widely extolled wildlife-friendly status is increasingly threatened by management intensification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!