Two open states of P2X receptor channels.

Front Cell Neurosci

Section on Cellular Signaling, Program in Developmental Neuroscience, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA.

Published: November 2013

The occupancy of the orthosteric ligand binding sites of P2X receptor (P2XR) channels causes the rapid opening of a small cation-permeable pore, followed by a gradual dilation that renders the pore permeable to large organic cations. Electrophysiologically, this phenomenon was shown using whole-cell current recording on P2X2R-, P2X2/X5R-, P2X4R- and P2X7R-expressing cells that were bathed in N-methyl-D-glucamine (NMDG(+))-containing buffers in the presence and/or absence of small monovalent and divalent cations. The pore dilation of P2X4R and P2X7R caused a secondary current growth, whereas that of P2X2R showed a sustained kinetic coupling of dilation and desensitization, leading to receptor channel closure. The pore size of the P2X7R open and dilated states was estimated to be approximately 0.85 nm and greater than 1 nm, respectively. The P2XR pore dilation was also observed in intact cells by measurement of fluorescent dye uptake/release, application of polyethylene glycols of different sizes, and atomic force microscopy. However, pore dilation was not observed at the single channel level. Structural data describing the dilated state are not available, and the relevance of orthosteric and allosteric ligand interactions to pore dilation was not studied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834609PMC
http://dx.doi.org/10.3389/fncel.2013.00215DOI Listing

Publication Analysis

Top Keywords

pore dilation
16
p2x receptor
8
dilation observed
8
pore
7
dilation
6
open states
4
states p2x
4
receptor channels
4
channels occupancy
4
occupancy orthosteric
4

Similar Publications

Nuclear pore permeability and fluid flow are modulated by its dilation state.

Mol Cell

December 2024

Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:

Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D.

View Article and Find Full Text PDF

Nucleoporins (nups) in the nuclear pore complex (NPC) form a selective barrier that suppresses the diffusion of most macromolecules while enabling rapid transport of nuclear transport receptor (NTR)-bound cargos. Recent studies have shown that the NPC may dilate and constrict, but how altering the NPC diameter affects its selective barrier properties remains unclear. Here, we build DNA nanopores with programmable diameters and nup arrangements to model the constricted and dilated NPCs.

View Article and Find Full Text PDF

Many voltage-gated potassium (Kv) channels display a time-dependent phenomenon called C-type inactivation, whereby prolonged activation by voltage leads to the inhibition of ionic conduction, a process that involves a conformational change at the selectivity filter toward a non-conductive state. Recently, a high-resolution structure of a strongly inactivated triple-mutant channel kv1.2-kv2.

View Article and Find Full Text PDF

Salidroside ameliorates hypoxic pulmonary hypertension by regulating the two-pore domain potassium TASK-1 channel.

Phytomedicine

December 2024

Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China. Electronic address:

Background: Hypoxic pulmonary vasoconstriction (HPV) is a reflex constriction of vascular smooth muscle. This study aims to investigate the role of Salidroside (Sal) in pulmonary arterial dilatation and the potential mechanism of Sal regulating hypoxic pulmonary hypertension in vitro and in vivo.

Methods: A rat model of hypoxic pulmonary hypertension (HPH) was constructed using hypoxic chamber.

View Article and Find Full Text PDF

Cell-type specific and environmentally-responsive plasticity in nuclear pore complex (NPC) composition and structure is an emerging area of investigation, but its molecular underpinnings remain ill defined. To understand the cause and consequence of NPC plasticity requires technologies to visualize differences within individual NPCs across the thousands in a given nucleus. We evaluate the utility of Pan Expansion Microscopy (Pan-ExM), which enables 16-20 fold isotropic cell enlargement while preserving the proteome, to reveal NPC plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!