Determination of clindamycin and its metabolite clindamycin sulfoxide in diverse sewage samples.

Environ Sci Pollut Res Int

Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany,

Published: October 2014

In a research project on risk management of harmful substances in water cycles, clindamycin and 12 further antibiotics were determined in different sewage samples. In contrast to other antibiotics, an increase of the clindamycin concentration in the final effluent in comparison to the influent of the sewage treatment plant (STP) was observed. A back transformation from the main metabolite clindamycin sulfoxide to clindamycin during the denitrification process has been discussed. Therefore, the concentration of this metabolite was measured additionally. Clindamycin sulfoxide was stable in the STP and the assumption of back transformation of the metabolite to clindamycin was confuted. To explain the increasing clindamycin concentration in the STP, the ratio of clindamycin sulfoxide to clindamycin was observed. The ratio increased in dry spells with concentrated samples and with long dwell time in the sewer system. A short hydraulic retention in waste water system and diluted samples in periods of extreme rainfall lead to a lower ratio of clindamycin sulfoxide to clindamycin concentration. A plausible explanation of this behavior could be that clindamycin was adsorbed strongly to a component of the sewage during this long residence time and in the STP, clindamycin was released. In the common sample preparation in the lab, clindamycin was not released. Measurements of clindamycin and clindamycin sulfoxide in the influent and effluent of STP is advised for sewage monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-013-2333-2DOI Listing

Publication Analysis

Top Keywords

clindamycin sulfoxide
24
clindamycin
17
metabolite clindamycin
12
clindamycin concentration
12
sulfoxide clindamycin
12
sewage samples
8
ratio clindamycin
8
clindamycin released
8
sulfoxide
6
sewage
5

Similar Publications

Background: pneumonia (PJP) is an opportunistic infection caused by the yeast-like fungus . As recommended by some guidelines, the first-line treatment for this infection is trimethoprim-sulfamethoxazole (TMP-SMX), and the second-line treatment includes drugs such as dapsone, pentamidine, primaquine, Atovaquone, clindamycin, and caspofungin. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked gene disorder in which treatment with oxidizing drugs, such as sulfonamides, dapsone, primaquine, can directly destroy hemoglobin present in red blood cells (RBCs), thereby inducing methemoglobin and hemolysis.

View Article and Find Full Text PDF

Selective accumulation of pharmaceutical residues from 6 different soils by plants: a comparative study on onion, radish, and spinach.

Environ Sci Pollut Res Int

April 2023

South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 38925, Vodňany, Czech Republic.

The accumulation of six pharmaceuticals of different therapeutic uses has been thoroughly investigated and compared between onion, spinach, and radish plants grown in six soil types. While neutral molecules (e.g.

View Article and Find Full Text PDF

Given the increase in bacterial resistance and the decrease in the development of new antibiotics, the appropriate use of old antimicrobials has become even more compulsory. Clindamycin is a lincosamide antibiotic approved for adults and children as a drug of choice for systemic treatment of staphylococcal, streptococcal, and gram-positive anaerobic bacterial infections. Because of its profile and high bioavailability, it is commonly used as part of an oral multimodal alternative for prolonged parenteral antibiotic regimens, e.

View Article and Find Full Text PDF

In this study, a new analytical method was developed and validated for the simultaneous analysis of antibiotic drugs (amoxicillin, cefotaxime, ciprofloxacin, clindamycin, linezolid, metronidazole) and their metabolites (amoxycilloic acid, amoxicillin diketopiperazine, 3-desacetyl cefotaxime lactone, clindamycin sulfoxide, ciprofloxacin piperazinyl-N4-sulfate, linezolid N-oxide, metronidazole-OH) in human urine. Capillary electrophoresis (CE) along with the tandem mass spectrometry (MS/MS) was used to determine and identify all analytes. Appropriate conditions for MS/MS measurements along with the use of the central composite design were optimized.

View Article and Find Full Text PDF

Proton pump inhibitor (PPI) use has been associated with microbiota alterations and susceptibility to infections (CDIs) in humans. We assessed how PPI treatment alters the fecal microbiota and whether treatment promotes CDIs in a mouse model. Mice receiving a PPI treatment were gavaged with 40 mg of omeprazole per kg of body weight during a 7-day pretreatment phase, the day of challenge, and the following 9 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!