One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates.

Nanoscale Res Lett

Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Escola de Engenharia, Federal University of Minas Gerais, Bloco 2, Sala 2233, Av, Antônio Carlos, 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil.

Published: December 2013

Quantum dots (QDs) are luminescent semiconductor nanocrystals with great prospective for use in biomedical and environmental applications. Nonetheless, eliminating the potential cytotoxicity of the QDs made with heavy metals is still a challenge facing the research community. Thus, the aim of this work was to develop a novel facile route for synthesising biocompatible QDs employing carbohydrate ligands in aqueous colloidal chemistry with optical properties tuned by pH. The synthesis of ZnS QDs capped by chitosan was performed using a single-step aqueous colloidal process at room temperature. The nanobioconjugates were extensively characterised by several techniques, and the results demonstrated that the average size of ZnS nanocrystals and their fluorescent properties were influenced by the pH during the synthesis. Hence, novel 'cadmium-free' biofunctionalised systems based on ZnS QDs capped by chitosan were successfully developed exhibiting luminescent activity that may be used in a large number of possible applications, such as probes in biology, medicine and pharmacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234014PMC
http://dx.doi.org/10.1186/1556-276X-8-512DOI Listing

Publication Analysis

Top Keywords

aqueous colloidal
8
zns qds
8
qds capped
8
capped chitosan
8
qds
5
one-step colloidal
4
colloidal synthesis
4
synthesis biocompatible
4
biocompatible water-soluble
4
zns
4

Similar Publications

Introduction: Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability.

Methods: The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 3 factorial design.

View Article and Find Full Text PDF

Currently, the development of high-performance adsorbents for the removal of nanoplastics in complex aquatic environments is challenging. In this study, a functionalized polyethyleneimine-phosphorylated microcrystalline cellulose/MoS (PEI-PMCC/MoS) hybrid aerogel was prepared and applied to remove carboxyl-modified polystyrene (PS-COOH) nanoplastics from the aqueous solution. Benefiting from the introduced functional groups and the expanded lamellar structure in MoS nanosheets as well as the highly porous 3D structure of the aerogel, PEI-PMCC/MoS demonstrated high efficiency in PS-COOH nanoplastics removal, achieving a 402.

View Article and Find Full Text PDF

Engineering vanadium vacancies to accelerate ion kinetics for high performance zinc ion battery.

J Colloid Interface Sci

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China. Electronic address:

Vanadium dioxide (VO) has attracted significant attention in aqueous zinc ion batteries (AZIBs) owing to their desirable theoretical specific capacity originated from multiple electrons transfer reaction and special crystal structure. However, sluggish electrochemical kinetics leads to inferior electrochemical storage performance. Herein, rich vanadium vacancies were introduced in tunnel VO to boost Zn diffusion, increasing charge storage capacity and lengthen lifespan.

View Article and Find Full Text PDF

Formation of water-in-water emulsions and microgels in nonionic surfactant + gelatin aqueous mixtures.

J Colloid Interface Sci

January 2025

Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, ISCIII), Jordi Girona, 18-26, 08034 Barcelona, Spain. Electronic address:

Article Synopsis
  • The study proposes that water-in-water (W/W) emulsions can be created by mixing a polymer and a surfactant, leading to phase segregation when the surfactant's cloud temperature is lowered.
  • Experiments involved using an ethoxylated triglyceride surfactant (Kolliphor ELP) with gelatin, where the gelatin reduced the surfactant's cloud temperature, allowing for two distinct aqueous phases to form.
  • The findings reveal that this is the first documented case of W/W emulsions formed with a polymer-surfactant mixture, achieving stability through chemically crosslinked microgels and the incorporation of mucin particles.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!