Developing methods for investigating coupled enzyme systems under conditions that mimic the cellular environment remains a significant challenge. Here we describe a biomimetic approach for constructing densely packed and confined multienzyme systems through the co-encapsulation of 2 and 3 enzymes within a virus-like particle (VLP) that perform a coupled cascade of reactions, creating a synthetic metabolon. Enzymes are efficiently encapsulated in vivo with known stoichiometries, and the kinetic parameters of the individual and coupled activities are characterized. From the results we develop and validate a mathematical model for predicting the expected kinetics for coupled reactions under co-localized conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/cb4006529 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!