Lignin nanotubes (LNTs) synthesized from the aromatic plant cell wall polymer lignin in a sacrificial alumina membrane template have as useful features their flexibility, ease of functionalization due to the availability of many functional groups, label-free detection by autofluorescence, and customizable optical properties. In this report we show that the physicochemical properties of LNTs can be varied over a wide range to match requirements for specific applications by using lignin with different subunit composition, a function of plant species and genotype, and by choosing the lignin isolation method (thioglycolic acid, phosphoric acid, sulfuric acid (Klason), sodium hydroxide lignin), which influences the size and reactivity of the lignin fragments. Cytotoxicity studies with human HeLa cells showed that concentrations of up to 90 mg/mL are tolerated, which is a 10-fold higher concentration than observed for single- or multiwalled carbon nanotubes (CNTs). Confocal microscopy imaging revealed that all LNT formulations enter HeLa cells without auxiliary agents and that LNTs made from NaOH-lignin penetrate the cell nucleus. We further show that DNA can adsorb to LNTs. Consequently, exposure of HeLa cells to LNTs coated with DNA encoding the green fluorescent protein (GFP) leads to transfection and expression of GFP. The highest transfection efficiency was obtained with LNTs made from NaOH-lignin due to a combination of high DNA binding capacity and DNA delivery directly into the nucleus. These combined features of LNTs make LNTs attractive as smart delivery vehicles of DNA without the cytotoxicity associated with CNTs or the immunogenicity of viral vectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm401555p | DOI Listing |
Chem Biomed Imaging
January 2025
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland.
Three water-soluble Mn(III)-porphyrin complexes with cationic pyridyl side groups bearing COOH- or OH-terminated carbon chains in the meta or para positions have been synthesized as probes for both magnetic resonance imaging (MRI) and photodynamic therapy (PDT). The complexes , , and are highly water-soluble, and their relaxivities range between 10 and 15 mM s, at 20-80 MHz and 298 K, 2-3 times higher than that of commercial Gd(III)-based agents. The complexes containing carboxylate () or alcoholic () side chains in the para position are endowed with higher relaxivities and have also shown efficient photoinduced DNA cleavage and singlet oxygen (O) generation.
View Article and Find Full Text PDFCell Death Dis
January 2025
Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy unit, University of Fribourg, CH-1700, Fribourg, Switzerland.
Cell death mediated by executioner caspases is essential during organ development and for organismal homeostasis. The mechanistic role of activated executioner caspases in antibacterial defense during infections with intracellular bacteria, such as Listeria monocytogenes, remains elusive. Cell death upon intracellular bacterial infections is considered altruistic to deprive the pathogens of their protective niche.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science and Engineering, Jilin University, Changchun 130062, China. Electronic address:
Thymol showed good antimicrobial activity, however, the poor aqueous solubility limits it to apply in food industry. α-Lactalbumin can be used to delivery hydrophobic molecules, then enhancing their biological activities. The study investigates the potential of α-lactalbumin to expand the application range of thymol, further to evaluate the antimicrobial activity of the α-lactalbumin-thymol complexation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain.
Traditional cell culture methods face significant limitations in monitoring cell secretions with spatial and temporal precision. Advanced microsystems incorporating biosensors have been developed to address these challenges, but they tend to lack versatility, and their complexity, along with the requirement for specialized equipment, limits their broader adoption. CellStudio offers an innovative, user-friendly solution that exploits Printing and Vacuum Lithography combined with bead-based assays to create modular and tunable cell patterns surrounded by biosensors.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, Russia.
The aim of the present study was to obtain new metal complexes of citrus pectin with cobalt ions based on potassium polygalacturonate and to prepare a new pharmacological composition (PC) PGKCo: PGNaCo (1:1) with antitumor activity based on potassium cobalt polygalacturonate (PGKCo) and sodium cobalt polygalacturonate (PGNaCo). The study of the effect of PGKCo, PGNaCo and PC on the cell viability of tumor cell lines of different genesis in vitro showed that the obtained compounds are soluble in water and exhibit selective cytotoxic activity against the tumor cell lines of human lung carcinoma A549, breast adenocarcinoma MCF-7 and cervical carcinoma M-HeLa, with no significant toxic effect on normal human cells. The possible mechanism of action of the investigated PC on M-HeLa cancer cells was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!