Directed evolution is a very popular strategy for improving biophysical properties and even for generating proteins with novel functions. Recent advances in combinatorial protein engineering mean it is now possible to develop protein scaffolds that could substitute for whole antibody-associated properties as emerging therapeutic proteins. In particular, disulfide-rich proteins are attractive templates for directed evolution in the search for novel molecules because they can regulate the activities of receptors, enzymes, and other molecules. Previously, we demonstrated that functional regulatory molecules against interleukin-6 receptor (IL-6R) could be obtained by directed evolution of the three-finger toxin (3F) scaffold. In the present study, trypsin was selected as a target for directed evolution to further explore the potential use of the 3F cDNA display library. After seven rounds of selection, the DNA sequences converged. The recombinant proteins produced by the selected candidates had inhibitory activity against trypsin (Ki of 33-450 nM). Three of the six groups had Ki values that were comparable to bovine pancreatic trypsin inhibitor and soybean trypsin inhibitor. Two of the candidates also had inhibitory effects against chymotrypsin and kallikrein. This study suggests that 3F protein is suitable for the preparation of high-diversity libraries that can be utilized to obtain protease inhibitors. In addition to our previous successful targeting of IL-6R, the technique developed in our studies may have wide applications in the generation of regulatory molecules for targets of interest, such as receptors, enzymes for research, diagnostic applications, and therapeutic uses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10799893.2013.865747 | DOI Listing |
Biomed Phys Eng Express
January 2025
Children's Hospital of Eastern Switzerland, Claudiusstrasse 6, St.Gallen, 9006, SWITZERLAND.
Mapping the myomagnetic field of a straight and easily accessible muscle after electrical stimulation using triaxial optically pumped magnetometers (OPMs) to assess potential benefits for magnetomyography (MMG). Approach: Six triaxial OPMs were arranged in two rows with three sensors each along the abductor digiti minimi (ADM) muscle. The upper row of sensors was inclined by 45° with respect to the lower row and all sensors were aligned closely to the skin surface without direct contact.
View Article and Find Full Text PDFMol Biol Rep
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
Background: Paeonia lactiflora Pall., a member of Paeoniaceae family, is a medicinal herb widely used in traditional Chinese medicine. Chloroplasts are multifunctional organelles containing distinct genetic material.
View Article and Find Full Text PDFAstrobiology
January 2025
Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany.
The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers.
View Article and Find Full Text PDFProtein phosphatases are critical for regulating cell signaling, cell cycle, and cell fate decisions, and their dysregulation leads to an array of human diseases like cancer. The dual specificity phosphatases (DUSPs) have emerged as important factors driving tumorigenesis and cancer therapy resistance. DUSP12 is a poorly characterized atypical DUSP widely conserved throughout evolution.
View Article and Find Full Text PDFThe strong correlation between reproductive life cycle type and chromosome numbers in green plants has been a long-standing mystery in evolutionary biology. Within green plants, the derived condition of heterosporous reproduction has emerged from the ancestral condition of homospory in disparate locations on the phylogenetic tree at least 11 times, of which three lineages are extant. In all green plant lineages where heterospory has emerged, there has been a significant downsizing in chromosome numbers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!