Aging is a multi-factorial process that ultimately induces a decline in our physiological functioning, causing a decreased health-span, quality of life and independence for older adults. Exercise participation is seen as a way to reduce the impact of aging through maintenance of physiological parameters. Eccentric exercise is a model that can be employed with older adults, due to the muscle's ability to combine high muscle force production with a low energy cost. There may however be a risk of muscle damage before the muscle is able to adapt. The first part of this review describes the process of aging and how it reduces aerobic capacity, muscle strength and therefore functional mobility. The second part highlights eccentric exercise and the associated muscle damage, in addition to the repeated bout effect. The final section reviews eccentric exercise interventions that have been completed by older adults with a focus on the changes in functional mobility. In conclusion, eccentric endurance exercise is a potential training modality that can be applied to older adults for improving muscle strength, aerobic capacity and functional ability. However, further research is needed to assess the effects on aerobic capacity and the ideal prescription for eccentric endurance exercise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3843652 | PMC |
http://dx.doi.org/10.14336/AD.2013.0400351 | DOI Listing |
FASEB J
January 2025
Shirley Ryan AbilityLab, Chicago, Illinois, USA.
Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury.
View Article and Find Full Text PDFJ Strength Cond Res
December 2024
School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
Grammenou, M, Kendall, KL, Wilson, CJ, Porter, T, Laws, SM, and Haff, GG. Effect of fitness level on time course of recovery after acute strength and high-intensity interval training. J Strength Cond Res 38(12): 2055-2064, 2024-The aim was to investigate time course of recovery after acute bouts of strength (STR) and high-intensity interval training (HIIT).
View Article and Find Full Text PDFJ Strength Cond Res
September 2024
School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
Grammenou, M, Kendall, KL, Wilson, CJ, Porter, T, Laws, SM, and Haff, GG. Effect of fitness level on time course of recovery after acute strength and high-intensity interval training. J Strength Cond Res XX(X): 000-000, 2024-The aim was to investigate time course of recovery after acute bouts of strength (STR) and high-intensity interval training (HIIT).
View Article and Find Full Text PDFMed Sci Sports Exerc
December 2024
Department of Rehabilitation Sciences, Ghent University, Ghent, BELGIUM.
Purpose: Eccentric calf training for Achilles tendinopathy shows variable success in athletes. Recent insights suggest a role for tendon fluid flow (exudation or redistribution) during exercise, which explains post-exercise reductions in thickness and increases in stiffness of the tendon. This fluid flow is thought to be beneficial as it may promote tendon remodeling, reduce intratendinous pressure, and alleviate pain.
View Article and Find Full Text PDFSci Rep
January 2025
Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.
The treatment of Achilles tendinopathy is challenging, as 40% of patients do not respond to existing rehabilitation protocols. These protocols neglect individual Achilles tendon (AT) characteristics, which are crucial for healing of the tendon tissue. Although prior studies suggest an optimal strain for AT regeneration (6% tendon strains), it is unclear if current protocols meet this condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!