Aim: To evaluate the therapeutic effect of Shugan-decoction (SGD) on visceral hyperalgesia and colon gene expressions using a rat model.
Methods: Ninety-six adult male Wistar rats were randomized into six equal groups for assessment of SGD effects on psychological stress-induced changes using the classic water avoidance stress (WAS) test. Untreated model rats were exposed to chronic (1 h/d for 10 d consecutive) WAS conditions; experimental treatment model rats were administered with intragastric SGD at 1 h before WAS on consecutive days 4-10 (low-dose: 0.1 g/mL; mid-dose: 0.2 g/mL; high-dose: 0.4 g/mL); control treatment model rats were similarly administered with the irritable bowel syndrome drug, dicetel (0.0042 g/mL); untreated normal control rats received no drug and were not subjected to the WAS test. At the end of the 10-d WAS testing period, a semi-quantitative measurement of visceral sensitivity was made by assessing the abdominal withdrawal reflex (AWR) to colorectal balloon-induced distension (at 5 mmHg increments) to determine the pain pressure threshold (PPT, evidenced by pain behavior). Subsequently, the animals were sacrificed and colonic tissues collected for assessment of changes in expressions of proteins related to visceral hypersensitivity (transient receptor potential vanilloid 1, TRPV1) and sustained visceral hyperalgesia (substance P, SP) by immunohistochemistry and real-time polymerase chain reaction. Inter-group differences were assessed by paired t test or repeated measures analysis of variance.
Results: The WAS test successfully induced visceral hypersensitivity, as evidenced by a significantly reduced AWR pressure in the untreated model group as compared to the untreated normal control group (190.4 ± 3.48 mmHg vs 224.0 ± 4.99 mmHg, P < 0.001). SGD treatments at mid-dose and high-dose and the dicetel treatment significantly increased the WAS-reduced PPT (212.5 ± 2.54, 216.5 ± 3.50 and 217.7 ± 2.83 mmHg respectively, all P < 0.001); however, the low-dose SGD treatment produced no significant effect on the WAS-reduced PPT (198.3 ± 1.78 mmHg, P > 0.05). These trends corresponded to the differential expressions observed for both TRPV1 protein (mid-dose: 1.64 ± 0.08 and high-dose: 1.69 ± 0.12 vs untreated model: 3.65 ± 0.32, P < 0.001) and mRNA (0.44 ± 0.16 and 0.15 ± 0.03 vs 1.39 ± 0.15, P < 0.001) and SP protein (0.99 ± 0.20 and 1.03 ± 0.23 vs 2.03 ± 0.12, P < 0.01) and mRNA (1.64 ± 0.19 and 1.32 ± 0.14 vs 2.60 ± 0.33, P < 0.05). These differential expressions of TRPV1 and SP related to mid- and high-dose SGD treatments were statistically similar to the changes induced by dicetel treatment. No signs of overt damage to the rat system were observed for any of the SGD dosages.
Conclusion: Shugan-decoction can reduce chronic stress-induced visceral hypersensitivity in rats, and the regulatory mechanism may involve mediating the expressions of TRPV1 and SP in colon tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848156 | PMC |
http://dx.doi.org/10.3748/wjg.v19.i44.8071 | DOI Listing |
BMC Gastroenterol
January 2025
Department of Anesthesiology, First Affiliated Hospital, Fujian Medical University, No. 20, Cha Zhong Road, Fuzhou, Fujian Province, People's Republic of China.
Background: Visceral pain sensitization and emotional reactions due to irritable bowel syndrome (IBS) occur frequently in the general population. Oxidative stress plays a crucial role in the pathogenesis of IBS. Previous studies have demonstrated that activation of peroxisome proliferator-activated receptor gamma (PPARγ) has analgesic effects.
View Article and Find Full Text PDFA two-month-old developmentally normal full-term female presented with severe feeding intolerance, progressive weight loss, and persistent fussiness, leading to multiple emergency department visits and eventual hospitalization. Initial evaluations, including laboratory tests and imaging, were unremarkable, prompting a series of diagnostic and therapeutic interventions. A multidisciplinary approach, including empiric gastroesophageal reflux disease (GERD) therapy, was started.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburg, PA 15261, USA.
Sensitization of primary afferents is essential for the development of pain, but the molecular events involved in this process and its reversal are poorly defined. Recent studies revealed that acid-sensing ion channels (ASICs) control the excitability of nociceptors in the urinary bladder. Using genetic and pharmacological tools we show that ASICs are functionally coupled with voltage-gated Ca channels to mediate Ca transients evoked by acidification in sensory neurons.
View Article and Find Full Text PDFNeuropeptides
December 2024
Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, United States of America; Department of Pharmacology and Chemical Biology, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America. Electronic address:
Pain and itch are regulated by a diverse array of neuropeptides and their receptors in superficial laminae of the spinal cord dorsal horn (DH). Neuropeptide Y (NPY) is normally expressed on DH neurons but not sensory neurons. By contrast, the Npy2r receptor (Y2) is expressed on the central and peripheral terminals of sensory neurons but not on DH neurons.
View Article and Find Full Text PDFPain
October 2024
Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.
The peripheral inflammatory response is an attractive therapeutic target for pain treatment. Neutrophils are the first circulating inflammatory cells recruited to sites of injury, but their contribution to pain outcomes is unclear. We performed a systematic review and meta-analysis of original preclinical studies, which evaluated the effect of preemptive neutrophil depletion on pain outcomes (PROSPERO registration number: CRD42022364004).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!