This paper presents an in silico characterization of the chitin binding protein CBP50 from B. thuringiensis serovar konkukian S4 through homology modeling and molecular docking. The CBP50 has shown a modular structure containing an N-terminal CBM33 domain, two consecutive fibronectin-III (Fn-III) like domains and a C-terminal CBM5 domain. The protein presented a unique modular structure which could not be modeled using ordinary procedures. So, domain wise modeling using MODELLER and docking analyses using Autodock Vina were performed. The best conformation for each domain was selected using standard procedure. It was revealed that four amino acid residues Glu-71, Ser-74, Glu-76 and Gln-90 from N-terminal domain are involved in protein-substrate interaction. Similarly, amino acid residues Trp-20, Asn-21, Ser-23 and Val-30 of Fn-III like domains and Glu-15, Ala-17, Ser-18 and Leu-35 of C-terminal domain were involved in substrate binding. Site-directed mutagenesis of these proposed amino acid residues in future will elucidate the key amino acids involved in chitin binding activity of CBP50 protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842575 | PMC |
http://dx.doi.org/10.6026/97320630009901 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biotechnology Engineering, NITTE (Deemed to be University), NMAM Institute of Technology, 574110, Karnataka, India.
Endophytes from medicinal plants are potential biocontrol agents against Fusarium oxysporum f. sp. cubense (Foc), which is the causative fungus of banana wilt disease.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea.
Marine and terrestrial organisms often utilise EGF/EGF-like domains in wet adhesives, yet their roles in adhesion remain unclear. Here, we investigate the Barbatia virescense byssal system and uncover an oxidation-independent, reversible, and robust adhesion mechanism where EGF/EGF-like domain tandem repetitions in adhesive proteins bind robustly to GlcNAc-based biopolymer. EGF/EGF-like-domain-containing proteins demonstrate over three-fold superior underwater adhesion to chitosan compared to the well-known strongest wet-adhesive proteins, mefp-5, and suckerin, when adhering to mica in an surface forces apparatus-based measurement.
View Article and Find Full Text PDFJ Struct Biol
December 2024
Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Armilla 18100, Granada, Spain. Electronic address:
The nacre formation process is a fascinating phenomenon involving mineral phase transformations, self-assembly processes, and protein-mineral interactions, resulting in a hierarchical structure that exhibits outstanding mechanical properties. However, this process is only partially known, and many aspects of nacre structure are not well understood, especially at the molecular scale. To understand the interplay between components-aragonite, protein and chitin-of the structure of nacre observed experimentally, we investigate the interactions of a peptide that is part of the protein lustrin A, identified in the nacreous layer of the shell of the abalone Haliotis rufescens, with the (001) crystal surface of aragonite and the chitin molecule.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Plant Protection, Southwest University, Chongqing 400715, China.
Etoxazole, a widely used mite growth inhibitor, contains a chiral center in its chemical structure, resulting in two mirror-image enantiomers. These enantiomers of etoxazole display significant differences in biological activity and environmental behavior. In bioassays conducted against , it was observed that S-etoxazole demonstrated approximately 279.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!