LPS induces the expression of NO synthase 2 (nos2) in macrophages. The expression of this molecule is one of the hallmarks of classical activation. In this paper, we describe that trichostatin A (TSA), which inhibits deacetylase activity, blocks LPS-dependent nos2 expression. TSA specifically inhibits LPS-dependent genes of secondary response, which require new protein synthesis for their induction but not those belonging to the primary response, which do not depend on this process. Deacetylase activity acts at the transcriptional level because RNA polymerase II was not bound after LPS stimulus when we added TSA. A link between the global acetylation caused by HDAC inhibitor and gene promoter recruitment of CDK8 was found. This Mediator complex subunit associates with Med 12, Med13, and cyclin C to form a submodule that is a transcriptional negative regulator. We also found that TSA reduces C/EBPβ phosphorylation without affecting its binding to DNA. Taken together, these results shed light on the molecular mechanisms involved in the transcriptional regulation of LPS-treated macrophages and on how TSA targets critical LPS-induced genes, such as nos2 and tnf-α, in inflammatory macrophage response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1203500 | DOI Listing |
J Clin Med
December 2024
Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain.
Acute myocardial infarction (AMI) is a critical medical condition that requires immediate attention to minimise heart damage and improve survival rates. Early identification and prompt treatment are essential to save the patient's life. Currently, the treatment strategy focuses on restoring blood flow to the myocardium as quickly as possible.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
Background: Histone deacetylase 4 () is a member of the class II histone deacetylase family, whose members play a crucial role in various biological processes. An in-depth investigation of the transcriptional characteristics of chicken can provide fundamental insights into its function.
Methods: We examined expression in chicken embryonic stem cells (ESC) and spermatogonial stem cells (SSC) and cloned a 444 bp fragment from upstream of the chicken transcription start site.
Neurochem Res
January 2025
Huazhong University of Science and Technology, Tongji Medical College, Wuhan, Hubei, 430000, China.
Epilepsy (EP) is a neurological disorder characterized by abnormal, sudden neuronal discharges. Seizures increase extracellular glutamate levels, causing excitotoxic damage. Glutamate transporter type 1 (GLT-1) and its human homologue excitatory amino acid transporter-2 (EAAT2) clear 95% of extracellular glutamate.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye.
Colon cancer is one of the most common cancer-related deaths. Drug resistance is one of the biggest challenges in cancer treatment. Numerous pharmacological and biochemical investigations have documented the benzimidazole ring's anticancer, anti-inflammatory, and antioxidant properties.
View Article and Find Full Text PDFClin Orthop Relat Res
January 2025
Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
Background: Deficient internal rotation after shoulder arthroplasty can inhibit specific essential activities of daily living that require behind-the-back arm positioning. Although postoperative internal rotation deficits occur, their impact on outcomes of total shoulder arthroplasty (TSA) is not well established. Previous authors have validated the Single Assessment Numeric Evaluation (SANE) as a patient-reported assessment of acceptable outcomes of TSA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!