Unexpected room-temperature ferromagnetism in nanostructured Bi2Te3.

Angew Chem Int Ed Engl

State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, (P. R. China).

Published: January 2014

There is an urgent need for the development in the field of the magnetism of topological insulators, owing to the necessity for the realization of the quantum anomalous Hall effect. Herein, we discuss experimentally fabricated nanostructured hierarchical architectures of the topological insulator Bi2Te3 without the introduction of any exotic magnetic dopants, in which intriguing room-temperature ferromagnetism was identified. First-principles calculations demonstrated that the intrinsic point defect with respect to the antisite Te site is responsible for the creation of a magnetic moment. Such a mechanism, which is different from that of a vacancy defect, provides new insights into the origins of magnetism. Our findings may pave the way for developing future Bi2Te3-based dissipationless spintronics and fault-tolerant quantum computation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201309416DOI Listing

Publication Analysis

Top Keywords

room-temperature ferromagnetism
8
unexpected room-temperature
4
ferromagnetism nanostructured
4
nanostructured bi2te3
4
bi2te3 urgent
4
urgent development
4
development field
4
field magnetism
4
magnetism topological
4
topological insulators
4

Similar Publications

Percolative phase transition in few-layered MoSe field-effect transistors using Co and Cr contacts.

Nanoscale

December 2024

Layered Materials and Device Physics Laboratory, Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.

The metal-to-insulator phase transition (MIT) in two-dimensional (2D) materials under the influence of a gating electric field has revealed interesting electronic behavior and the need for a deeper fundamental understanding of electron transport processes, while attracting much interest in the development of next-generation electronic and optoelectronic devices. Although the mechanism of the MIT in 2D semiconductors is a topic under debate in condensed matter physics, our work demonstrates the tunable percolative phase transition in few-layered MoSe field-effect transistors (FETs) using different metallic contact materials. Here, we attempted to understand the MIT through temperature-dependent electronic transport measurements by tuning the carrier density in a MoSe channel under the influence of an applied gate voltage.

View Article and Find Full Text PDF

Preparation of two-dimensional (2D) ferromagnetic nanomaterials and the study of their magnetic sources are crucial for the exploration of new materials with multiple applications. Herein, two-dimensional room-temperature ferromagnetic (FM) CaTiO nanosheets are successfully constructed with the assistance of supercritical carbon dioxide (SC CO). In this process, the SC CO-induced strain effect can lead to lattice expansion and introduction of O vacancies.

View Article and Find Full Text PDF

Investigating material properties is essential to assessing their application potential. While computational methods allow for a fast prediction of the material structure and properties, experimental validation is essential to determining the ultimate material potential. Herein, we report the synthesis and experimental magnetic properties of three previously reported Kagome compounds in the Li-Fe-Ge system.

View Article and Find Full Text PDF

Exciton-polariton condensates, due to their nonlinear and coherent characteristics, have been employed to construct spin Hamiltonian lattices for potentially studying spin glass, critical dephasing, and even solving optimization problems. Here, we report the room-temperature polariton condensation and polaritonic soft-spin XY Hamiltonian lattices in an organic-inorganic halide perovskite microcavity. This is achieved through the direct integration of high-quality single-crystal samples within the cavity.

View Article and Find Full Text PDF

Magnetic information is usually stored in ferromagnets, where the ↑ and ↓ spin states are distinguishable due to time-reversal symmetry breaking. These states induce opposite signs of the Hall effect proportional to magnetization, which is widely used for their electrical read-out. By contrast, conventional antiferromagnets with a collinear antiparallel spin configuration cannot host such functions, because of symmetry (time-reversal followed by translation t symmetry) and lack of macroscopic magnetization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!