Regulation of death induction and chemosensitizing action of 3-bromopyruvate in myeloid leukemia cells: energy depletion, oxidative stress, and protein kinase activity modulation.

J Pharmacol Exp Ther

Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain (E.C., M.C.E., C.S.-M., R.B., E.B., E.R., P.A.); and Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain (M.C.B.-A.).

Published: February 2014

3-Bromopyruvate (3-BrP) is an alkylating, energy-depleting drug that is of interest in antitumor therapies, although the mechanisms underlying its cytotoxicity are ill-defined. We show here that 3-BrP causes concentration-dependent cell death of HL60 and other human myeloid leukemia cells, inducing both apoptosis and necrosis at 20-30 μM and a pure necrotic response at 60 μM. Low concentrations of 3-BrP (10-20 μM) brought about a rapid inhibition of glycolysis, which at higher concentrations was followed by the inhibition of mitochondrial respiration. The combination of these effects causes concentration-dependent ATP depletion, although this cannot explain the lethality at intermediate 3-BrP concentrations (20-30 μM). The oxidative stress caused by exposure to 3-BrP was evident as a moderate overproduction of reactive oxygen species and a concentration-dependent depletion of glutathione, which was an important determinant of 3-BrP toxicity. In addition, 3-BrP caused glutathione-dependent stimulation of p38 mitogen-activated protein kinase (MAPK), mitogen-induced extracellular kinase (MEK)/extracellular signal-regulated kinase (ERK), and protein kinase B (Akt)/mammalian target of rapamycin/p70S6K phosphorylation or activation, as well as rapid LKB-1/AMP kinase (AMPK) activation, which was later followed by Akt-mediated inactivation. Experiments with pharmacological inhibitors revealed that p38 MAPK activation enhances 3-BrP toxicity, which is conversely restrained by ERK and Akt activity. Finally, 3-BrP was seen to cooperate with antitumor agents like arsenic trioxide and curcumin in causing cell death, a response apparently mediated by both the generation of oxidative stress induced by 3-BrP and the attenuation of Akt and ERK activation by curcumin. In summary, 3-BrP cytotoxicity is the result of several combined regulatory mechanisms that might represent important targets to improve therapeutic efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.113.206714DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
protein kinase
12
3-brp
11
myeloid leukemia
8
leukemia cells
8
cell death
8
20-30 μm
8
3-brp toxicity
8
kinase
6
regulation death
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!