Background: Plant parasitic nematodes and soilborne pathogens can reduce the overall productivity in grape production. Not all grape growers apply soil fumigants before planting, and there is no single rootstock resistant to all nematode species. The aim of this investigation was to evaluate the effect of dimethyl disulfide (DMDS) applied at 112, 224, 448 and 897 kg ha(-1) as a post-plant treatment against soilborne plant parasitic nematodes and pathogens on the grape yield in established grapevines.
Results: In microplot and field trials, post-plant fumigation with DMDS controlled citrus (Tylenchulus semipenetrans), root-knot (Meloidogyne spp.), pin (Paratylenchus spp.) and ring (Mesocriconema xenoplax) nematodes in established Thomson Seedless grapevines. However, DMDS did not control the soilborne pathogens Pythium ultimum and Fusarium oxysporum. No indications of phytotoxicity were detected after post-plant fumigation with DMDS. In the field trial, grape yield was significantly higher with the lowest DMDS rate, but no difference among other rates was observed in comparison with the untreated control.
Conclusion: Post-plant fumigation with DMDS controlled plant parasitic nematodes in established grapevines but was less efficacious against soilborne pathogens. Low rates of DMDS were sufficient for nematode control and increased the grape yield, probably without affecting beneficial soil organisms. Further research on evaluating the potential effect of DMDS against beneficial soil organisms is needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.3666 | DOI Listing |
Sci Rep
December 2024
ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284 003, India.
Sugarcane is a major industrial crop highly susceptible to parasitic weed (Striga spp.), causing a 38% reduction in cane yield due to a longer lag phase of 20-40 days, and wider spacing. Herbicides with a longer retention and slow-release nature could allow Striga seeds to germinate and be killed before attaching to the host.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80526, USA.
Phytophthora blight caused by Phytophthora capsici is a serious disease affecting a wide range of plants. Biochar as a soil amendment could partially replace peat moss and has the potential to suppress plant diseases, but its effects on controlling phytophthora blight of container-grown peppers have less been explored, especially in combination of biological control using Trichoderma. In vitro (petri dish) and in vivo (greenhouse) studies were conducted to test sugarcane bagasse biochar (SBB) and mixed hardwood biochar (HB) controlling effects on pepper phytophthora blight disease with and without Trichoderma.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
Yeast two-hybrid library screening enables the discovery of novel protein-protein interactions. Identifying cytosolic host proteins targeted by host-translocated Phytophthora effector proteins relies on the mRNA amount, quality, and composition used to prepare the yeast two-hybrid cDNA library. Here we describe the steps required for the preparation of a Pinus radiata cDNA library optimized for Phytophthora effector target screening in yeast.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Agroecologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, 21000 Dijon, France.
Branched broomrape ( (L.) Pomel), an obligate parasitic weed with a wide host range, is known for its devasting effects on many crops worldwide. Soil fungi, notably sp.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
and its allies are important edible and medicinal mushrooms in China. They are usually called Jiner () and have been cultivated on a commercial scale. However, due to the lack of DNA sequences from the holotype of , the taxonomic issues of the species complex are unresolved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!