Changes in lipid composition of Photosystem 1 (PS 1) particles isolated from thylakoids phosphorylated under reductive or anaerobic conditions have been studied. Under reductive conditions, there was an increase in monogalactosyldiacylglycerol containing highly saturated fatty acids and phosphatidylglycerol containing transhexadecenoic fatty acid. Under anaerobic conditions, the amount of all lipid classes was increased. As we have shown earlier (S. V. Manuilskaya, O. I. Volovik, A. I. Mikhno, A. I. Polischuk and S. M. Kochubey (1990) Photosynthetica 24: 419-423) these changes were due to a co-migration of some lipid species and light-harvesting chlorophyll a/b complex LHC II from PS 2 to PS 1. These data allow us to conclude that LHC II consists of the lipoproteins containing specific lipids. Different composition of lipids co-migrating with LHC II under various conditions of phosphorylation might be caused by the variety of LHC II subpopulations transferred under each reductive condition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00029935DOI Listing

Publication Analysis

Top Keywords

anaerobic conditions
12
changes lipid
8
lipid composition
8
composition photosystem
8
photosystem particles
8
thylakoids phosphorylated
8
phosphorylated reductive
8
reductive anaerobic
8
conditions
5
particles thylakoids
4

Similar Publications

Bioremediation of trichloroethene (TCE)-contaminated sites often leads to groundwater acidification, while nitrate-polluted sites tend to generate alkalization. TCE and nitrate often coexist at contaminated sites; however, the pH variation caused by nitrate self-alkalization and TCE self-acidification and how these processes affect nitrate reduction and reductive dichlorination, have not been studied. This study investigated the interaction between nitrate and TCE, two common groundwater co-contaminants, during bioreduction in serum bottles containing synthetic mineral salt media and microbial consortia.

View Article and Find Full Text PDF

The products of an advanced sewage sludge fermentation process can be used to generate polyhydroxyalkanoates (PHAs), precursors of bioplastics considered excellent candidates for replacing petroleum-derived plastics. The aerobic feast-anoxic famine cycling strategy has proven to be an efficient method for enriching sewage sludge microbiota with PHA-producing microorganisms. This work evaluated the effect of different carbon to nitrogen ratios (C/N) of 3.

View Article and Find Full Text PDF

Polybrominated diphenyl ethers (PBDEs) are a class of persistent organic pollutants that may pose risks to human health and environmental biota, including soil microbial communities. These risks are further affected by a multitude of factors, including environmental conditions encountered in real-world settings. A comprehensive understanding of how PBDEs transform and microbial communities respond to the exposure under varying environmental conditions is paramount for assessing the ecological risks or identifying potential degraders.

View Article and Find Full Text PDF

Key bacterial vaginosis-associated bacteria influence each other's growth in biofilms in rich media and media simulating vaginal tract secretions.

Biofilm

June 2025

Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal.

Bacterial vaginosis (BV) is a very common gynaecologic condition affecting women of reproductive age worldwide. BV is characterized by a depletion of lactic acid-producing species and an increase in strict and facultative anaerobic bacteria that develop a polymicrobial biofilm on the vaginal epithelium. Despite multiple decades of research, the etiology of this infection is still not clear.

View Article and Find Full Text PDF

Building Localized NADP(H) Recycling Circuits to Advance Enzyme Cascadetronics.

Angew Chem Int Ed Engl

January 2025

University of Oxford, Chemistry, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The catalytic action of enzymes of a cascade trapped within a mesoporous electrode material is simultaneously energized, controlled and observed through the efficient, reversible electrochemical NAD(P)(H) recycling catalyzed by one of the enzymes. In their nanoconfined state, nicotinamide cofactors are tightly channeled current carriers, mediating multi-step reactions in either direction (oxidation or reduction) with a rapid response time. By incorporating a hydrogen‑borrowing enzyme pair, the internal action of which opposes the external voltage bias driving oxidation or reduction, a reduction process can be performed under overall oxidizing conditions, and vice versa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!