Nitrate reductase of spinach (Spinacia oleracea L.) leaves which had been inactivated in vitro by treatment with NADH and cyanide, was reactivated by incubation with oxidant systems and measured as FMNH2-dependent activity. Reactivation was produced with trivalent manganese compounds represented either by manganipyrophosphate or produced by oxidation of Mn(2+) ions in the presence of illuminated chloroplasts and compared with reactivation obtained with ferricyanide. Reactivation in the chloroplast system was equivalent to that with ferricyanide when orthophosphate was used but was variable and weak in the presence of pyrophosphate, although manganipyrophosphate was formed, freely. Reactivation by manganipyrophosphate in dark reaction conditions was less effective than with ferricyanide but was not inhibited by the addition of pyrophosphate. Reactivation with illuminated unheated chloroplasts was dependent on added manganese and oxidation of manganese in the presence of pyrophosphate was abolished by boiling the chloroplasts. In the presence of orthophosphate however, boiled, illuminated chloroplasts reactivated the enzyme in the absence of added manganese. Reactivation occurred spontaneously in air, more slowly than with the other oxidants, but to a similar extent to that produced by manganipyrophosphate. The results provide a possible model for physiological reactivation mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00390833DOI Listing

Publication Analysis

Top Keywords

illuminated chloroplasts
12
reactivation
8
nitrate reductase
8
reductase spinach
8
spinach spinacia
8
spinacia oleracea
8
nadh cyanide
8
trivalent manganese
8
presence pyrophosphate
8
manganese
5

Similar Publications

As a diverse and complex food matrix, the animal food microbiota and repertoire of antimicrobial resistance (AMR) genes remain to be better understood. In this study, 16S rRNA gene amplicon sequencing and shotgun metagenomics were applied to three types of animal food samples (cattle feed, dry dog food, and poultry feed). ZymoBIOMICS mock microbial community was used for workflow optimization including DNA extraction kits and bead-beating conditions.

View Article and Find Full Text PDF

Designing a microbial factory suited for plant chloroplast-derived enzymes to efficiently and green synthesize natural products: capsanthin and capsorubin as examples.

Metab Eng

January 2025

State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China. Electronic address:

Specific cellular microenvironment, multi-enzyme complex and expensive essential cofactor make the biological manufacturing of plant chloroplast natural products (PCNPs) extremely challenging. The above difficulties have hampered the biosynthesis of capsanthin and capsorubin in the past 30 years. Here, we take capsanthin and capsorubin as examples to design an innovative microbial factory to promote the heterologous synthesis of PCPNs.

View Article and Find Full Text PDF

Abscission is a tightly regulated process in which plants shed unnecessary, infected, damaged, or aging organs, as well as ripe fruits, through predetermined abscission zones in response to developmental, hormonal, and environmental signals. Despite its importance, the underlying mechanisms remain incompletely understood. This study highlights the deleterious effects of abscission on chloroplast ultrastructure in the cells of the tomato flower pedicel abscission zone, revealing spatiotemporal differential gene expression and key transcriptional networks involved in chloroplast vesiculation during abscission.

View Article and Find Full Text PDF

Nitrogen Assimilation Plays a Role in Balancing the Chloroplastic Glutathione Redox Potential Under High Light Conditions.

Plant Cell Environ

January 2025

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.

Nitrate reduction requires reducing equivalents produced by the photosynthetic electron transport chain. Therefore, it has been suggested that nitrate assimilation provides a sink for electrons under high light conditions. We tested this hypothesis by monitoring photosynthetic efficiency and the chloroplastic glutathione redox potential (chl-E) of plant lines with mutated glutamine synthetase 2 (GS2) and ferredoxin-dependent glutamate synthase 1 (GOGAT1).

View Article and Find Full Text PDF

Chloroplast arrangement in finger millet under low-temperature conditions.

Biochim Biophys Acta Gen Subj

January 2025

RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.

Background: Finger millet, a C plant with mesophyll and bundle sheath cells, has been cultivated at high altitudes in the Himalayas owing to its adaptability to stressful environments. Under environmental stresses such as high light and drought, finger millet mesophyll chloroplasts move toward the bundle sheath, a phenomenon known as aggregative arrangement.

Methods: To investigate the effect of low temperatures on mesophyll chloroplast arrangement in finger millet, we conducted microscopic observations and photochemical measurements using leaves treated at different temperatures in light or darkness, with or without pharmacological inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!