Changes in the cyanobacterial photosynthetic apparatus during acclimation to macronutrient deprivation.

Photosynth Res

Scripps Institution of Oceanography, University of California, 92093-020, San Diego, La Jolla, CA, USA.

Published: December 1994

When the cyanobacterium Synechococcus sp. Strain PCC 7942 is deprived of an essential macronutrient such as nitrogen, sulfur or phosphorus, cellular phycobiliprotein and chlorophyll contents decline. The level of β-carotene declines proportionately to chlorophyll, but the level of zeaxanthin increases relative to chlorophyll. In nitrogen- or sulfur-deprived cells there is a net degradation of phycobiliproteins. Otherwise, the declines in cellular pigmentation are due largely to the diluting effect of continued cell division after new pigment synthesis ceases and not to net pigment degradation. There was also a rapid decrease in O2 evolution when Synechococcus sp. Strain PCC 7942 was deprived of macronutrients. The rate of O2 evolution declined by more than 90% in nitrogen- or sulfur-deprived cells, and by approximately 40% in phosphorus-deprived cells. In addition, in all three cases the fluorescence emissions from Photosystem II and its antennae were reduced relative to that of Photosystem I and the remaining phycobilisomes. Furthermore, state transitions were not observed in cells deprived of sulfur or nitrogen and were greatly reduced in cells deprived of phosphorus. Photoacoustic measurements of the energy storage capacity of photosynthesis also showed that Photosystem II activity declined in nutrient-deprived cells. In contrast, energy storage by Photosystem I was unaffected, suggesting that Photosystem I-driven cyclic electron flow persisted in nutrient-deprived cells. These results indicate that in the modified photosynthetic apparatus of nutrient-deprived cells, a much larger fraction of the photosynthetic activity is driven by Photosystem I than in nutrient-replete cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00018260DOI Listing

Publication Analysis

Top Keywords

nutrient-deprived cells
12
cells
9
photosynthetic apparatus
8
synechococcus strain
8
strain pcc
8
pcc 7942
8
7942 deprived
8
nitrogen- sulfur-deprived
8
sulfur-deprived cells
8
cells deprived
8

Similar Publications

The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.

View Article and Find Full Text PDF

Inhibiting autophagy selectively prunes dysfunctional tumor vessels and optimizes the tumor immune microenvironment.

Theranostics

January 2025

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China.

Dysfunctional tumor vasculature, hypoxia, and an immunosuppressive microenvironment are significant barriers to effective cancer therapy. Autophagy, which is critical for maintaining cellular homeostasis and apoptosis resistance, is primarily triggered by hypoxia and nutrient deprivation, conditions prevalent in dysfunctional tumor vessels due to poor circulation. However, the role of autophagy in dysfunctional tumor endothelial cells and its impact on treatment and the tumor microenvironment (TME) remain poorly understood.

View Article and Find Full Text PDF

Quiescence in is a reversible G crucial for long-term survival under nutrient-deprived conditions. During quiescence, the genome is hypoacetylated and chromatin undergoes significant compaction. However, the 3D structure of the ribosomal DNA (rDNA) locus in this state is not well understood.

View Article and Find Full Text PDF

Adequate post-ischemic reperfusion of the mouse brain requires endothelial NFAT5.

Acta Neuropathol Commun

December 2024

Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.

Severity and outcome of strokes following cerebral hypoperfusion are significantly influenced by stress responses of the blood vessels. In this context, brain endothelial cells (BEC) regulate inflammation, angiogenesis and the vascular resistance to rapidly restore perfusion. Despite the relevance of these responses for infarct volume and tissue recovery, their transcriptional control in BEC is not well characterized.

View Article and Find Full Text PDF
Article Synopsis
  • Macropinocytosis is a survival strategy used by cancer cells, especially in nutrient-poor environments, relying heavily on glutamine to sustain themselves, particularly in pancreatic ductal adenocarcinoma (PDAC) cells.
  • The atypical protein kinase C (aPKC) enzymes, specifically PKCζ and PKCι, play a crucial role in regulating macropinocytosis by interacting with scaffold proteins that influence cell structure and function.
  • The research shows that aPKCs enhance macropinocytosis through the relocation of Par3 to microtubules, and their depletion adversely affects cell viability, which can be reversed by restoring macropinocytosis, highlighting the significance of aPKCs in supporting
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!